uu.seUppsala University Publications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt154",{id:"formSmash:upper:j_idt154",widgetVar:"widget_formSmash_upper_j_idt154",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt155_j_idt157",{id:"formSmash:upper:j_idt155:j_idt157",widgetVar:"widget_formSmash_upper_j_idt155_j_idt157",target:"formSmash:upper:j_idt155:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Convergence Acceleration for Flow ProblemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2001 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis , 2001. , p. 22
##### Series

Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 598
##### Keywords [en]

Computational fluid dynamics, convergence acceleration, semicirculant preconditioning, fundamental solutions
##### National Category

Computational Mathematics
##### Research subject

Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-576ISBN: 91-554-4914-X (print)OAI: oai:DiVA.org:uu-576DiVA, id: diva2:166291
##### Public defence

2001-02-09, Room 2347, Polacksbacken, Uppsala University, Uppsala, 13:15 (English)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt497",{id:"formSmash:j_idt497",widgetVar:"widget_formSmash_j_idt497",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt503",{id:"formSmash:j_idt503",widgetVar:"widget_formSmash_j_idt503",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt509",{id:"formSmash:j_idt509",widgetVar:"widget_formSmash_j_idt509",multiple:true}); Available from: 2001-01-19 Created: 2001-01-19 Last updated: 2011-10-26Bibliographically approved
##### List of papers

Convergence acceleration techniques for the iterative solution of system of equations arising in the discretisations of compressible flow problems governed by the steady state Euler or Navier-Stokes equations is considered. The system of PDE is discretised using a finite difference or finite volume method yielding a large sparse system of equations. A solution is computed by integrating the corresponding time dependent problem in time until steady state is reached.

A convergence acceleration technique based on semicirculant approximations is applied. For scalar model problems, it is proved that the preconditioned coefficient matrix has a bounded spectrum well separated from the origin. A very simple time marching scheme such as the forward Euler method can be used, and the time step is not limited by a CFL-type criterion. Instead, the time step can asymptotically be chosen as a constant, independent of the number of grid points and the Reynolds number. Numerical experiments show that grid and parameter independent convergence is achieved also in more complicated problem settings. A comparison with a multigrid method shows that the semicirculant convergence acceleration technique is more efficient in terms of arithmetic complexity.

Another convergence acceleration technique based on fundamental solutions is proposed. An algorithm based on Fourier technique is provided for the fast application. Scalar model problems are considered and a theory, where the preconditioner is represented as an integral operator is derived. Theory and numerical experiments show that for first order partial differential equations, grid independent convergence is achieved.

1. Convergence acceleration for hyperbolic systems using semicirculant approximations$(function(){PrimeFaces.cw("OverlayPanel","overlay96269",{id:"formSmash:j_idt570:0:j_idt574",widgetVar:"overlay96269",target:"formSmash:j_idt570:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Convergence acceleration for the linearized Navier-Stokes equations using semicirculant approximations$(function(){PrimeFaces.cw("OverlayPanel","overlay64409",{id:"formSmash:j_idt570:1:j_idt574",widgetVar:"overlay64409",target:"formSmash:j_idt570:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Convergence acceleration for the steady-state Euler equations$(function(){PrimeFaces.cw("OverlayPanel","overlay75070",{id:"formSmash:j_idt570:2:j_idt574",widgetVar:"overlay75070",target:"formSmash:j_idt570:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Preconditioners Based on Fundamental Solutions$(function(){PrimeFaces.cw("OverlayPanel","overlay96398",{id:"formSmash:j_idt570:3:j_idt574",widgetVar:"overlay96398",target:"formSmash:j_idt570:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Numerical boundary conditions for ODE$(function(){PrimeFaces.cw("OverlayPanel","overlay106895",{id:"formSmash:j_idt570:4:j_idt574",widgetVar:"overlay106895",target:"formSmash:j_idt570:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1274",{id:"formSmash:j_idt1274",widgetVar:"widget_formSmash_j_idt1274",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1327",{id:"formSmash:lower:j_idt1327",widgetVar:"widget_formSmash_lower_j_idt1327",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1328_j_idt1330",{id:"formSmash:lower:j_idt1328:j_idt1330",widgetVar:"widget_formSmash_lower_j_idt1328_j_idt1330",target:"formSmash:lower:j_idt1328:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});