uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nuclear and mitochondrial DNA quantification of various forensic materials
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics.
2006 (English)In: Forensic Science International, ISSN 0379-0738, E-ISSN 1872-6283, Vol. 164, no 1, p. 56-64Article in journal (Refereed) Published
Abstract [en]

Due to the different types and quality of forensic evidence materials, their DNA content can vary substantially, and particularly low quantities can impact the results in an identification analysis. In this study, the quantity of mitochondrial and nuclear DNA was determined in a variety of materials using a previously described real-time PCR method. DNA quantification in the roots and distal sections of plucked and shed head hairs revealed large variations in DNA content particularly between the root and the shaft of plucked hairs. Also large intra- and inter-individual variations were found among hairs. In additions DNA content was estimated in samples collected from fingerprints and accessories. The quantification of DNA on various items also displayed large variations, with some materials containing large amounts of nuclear DNA while no detectable nuclear DNA and only limited amounts of mitochondrial DNA were seen in others. Using this sensitive real-time PCR quantification assay, a better understanding was obtained regarding DNA content and variation in commonly analysed forensic evidence materials and this may guide the forensic scientist as to the best molecular biology approach for analysing various forensic evidence materials.

Place, publisher, year, edition, pages
2006. Vol. 164, no 1, p. 56-64
Keyword [en]
quantification, real-time PCR, forensic materials, hair, nuclear DNA, mitochondrial DNA
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-92985DOI: 10.1016/j.forsciint.2005.11.024ISI: 000242666700006PubMedID: 16427750OAI: oai:DiVA.org:uu-92985DiVA, id: diva2:166325
Available from: 2005-04-29 Created: 2005-04-29 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Sensitive Forensic DNA Analysis: Application of Pyrosequencing and Real-time PCR Quantification
Open this publication in new window or tab >>Sensitive Forensic DNA Analysis: Application of Pyrosequencing and Real-time PCR Quantification
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The field of forensic genetics is growing fast and the development and optimisation of more sensitive, faster and more discriminating forensic DNA analysis methods is highly important. In this thesis, an evaluation of the use of novel DNA technologies and the development of specific applications for use in forensic casework investigations are presented.

In order to maximise the use of valuable limited DNA samples, a fast and user-friendly Real-time PCR quantification assay, of nuclear and mitochondrial DNA copies, was developed. The system is based on the 5’ exonuclease detection assay and was evaluated and successfully used for quantification of a number of different evidence material types commonly found on crime scenes. Furthermore, a system is described that allows both nuclear DNA quantification and sex determination in limited samples, based on intercalation of the SYBR Green dye to double stranded DNA.

To enable highly sensitive DNA analysis, Pyrosequencing of short stretches of mitochondrial DNA was developed. The system covers both control region and coding region variation, thus providing increased discrimination power for mitochondrial DNA analysis. Finally, due to the lack of optimal assays for quantification of mitochondrial DNA mixture, an alternative use of the Pyrosequencing system was developed. This assay allows precise ratio quantification of mitochondrial DNA in samples showing contribution from more than one individual.

In conclusion, the development of optimised forensic DNA analysis methods in this thesis provides several novel quantification assays and increased knowledge of typical DNA amounts in various forensic samples. The new, fast and sensitive mitochondrial DNA Pyrosequencing assay was developed and has the potential for increased discrimination power.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2005. p. 44
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 33
Keyword
Genetics, forensic, sensitive DNA analysis, DNA quantification, mtDNA, Real-time PCR, Pyrosequencing, Genetik
National Category
Medical Genetics
Identifiers
urn:nbn:se:uu:diva-5775 (URN)91-554-6234-0 (ISBN)
Public defence
2005-05-21, Rudbecksalen, Rudbecklaboratoriet, Uppsala, 09:00
Opponent
Supervisors
Available from: 2005-04-29 Created: 2005-04-29 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records BETA

Nilsson, MartinaAllen, Marie

Search in DiVA

By author/editor
Nilsson, MartinaAllen, Marie
By organisation
Department of Immunology, Genetics and PathologyGenomics
In the same journal
Forensic Science International
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1013 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf