uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Random tournaments and random circuitsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 1999 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis , 1999. , 11 p.
##### Series

Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 14
##### Keyword [en]

Mathematics, Poisson-Dirichlet distribution, random circuit decomposition, random tournament, subgraph count
##### Keyword [sv]

MATEMATIK
##### National Category

Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-58ISBN: 91-506-1380-4OAI: oai:DiVA.org:uu-58DiVA: diva2:166421
##### Public defence

1999-12-17, Room 247, Building 2, Polacksbacken, Uppsala University, Uppsala, 13:15
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 1999-11-26 Created: 1999-11-26Bibliographically approved

This thesis is devoted to two different topics in the area of probabilistic combinatorics: asymptotic behaviour of subgraph counts in a random tournament and random circuit decompositions of complete graphs.

Let *T*_{n} be a random tournament on n vertices, chosen uniformly from all 2(^{n}_{2}) such tournaments, and let *D* be an arbitrary directed graph. Then the number of copies of *D* in *T*_{n} is a random variable which, after normalization, converges in distribution as *n* tends to infinity. The limit distribution is determined, and it turns out to be normal for a typical *D*, but for some *D* it is a quadratic polynomial in normal variables. It is also shown that the variance of the number of copies of *D* in *T*_{n} is a polynomial in n and that the degree of this polynomial is, for a typical *D*, 2*v* - 3, where v is the number of vertices of D. However, examples are given for which this degree is as low as *v*.

Some directed graphs turn out to appear the same number of times in all tournaments with a fixed number of vertices. A partial characterization of these directed graphs is given.

In the complete undirected or directed graph on *n* vertices, choose a random decomposition of the set of all edges into circuits, uniformly from all such decompositions. Letting *L*_{k} be the fraction of edges contained in the *k*-th longest circuit in this decomposition, it is shown that (*L*_{1}, *L*_{2},...) converges to a Poisson-Dirichlet distribution as n tends to infinity. It is also shown that the numbersof circuits of given lengths converge jointly to independent Poisson variables, and that the expected number of circuits is log *n* + *O*(1) in the undirected case and 2 log *n* + *O*(1) in the directed case.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});