uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Substrate Dynamics on CO-MgO(001) Bonding: Using Molecular Dynamics Snapshots in Quantum-Chemical Calculations
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry.
2006 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 110, no 11, 5473-5479 p.Article in journal (Refereed) Published
Abstract [en]

Combined molecular dynamics (MD) and quantum mechanics (QM) calculations have been performed for CO adsorbed on MgO(001) at 50 K. The changes in the adsorption energy caused by the surface dynamics have been analyzed, and a clear correlation was found between the dynamic variation of the adsorption energy and the electrostatic field above the adsorption site. By separating the electrostatic contributions arising from the local structure at the adsorption site from those originating from the rest of the slab, a linear expression of these contributions could be fitted which closely reproduces the dynamic changes in the adsorption energy. Using this simple linear expression, the distribution of adsorption energies for CO above the Mg2+ sites on the MgO(001) surface at 50, 80, and 150 K have been predicted.

Place, publisher, year, edition, pages
2006. Vol. 110, no 11, 5473-5479 p.
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-93853DOI: 10.1021/jp0538262PubMedID: 16539485OAI: oai:DiVA.org:uu-93853DiVA: diva2:167471
Available from: 2005-12-23 Created: 2005-12-23 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Combined Molecular Dynamics and Embedded-Cluster Calculations in Metal Oxide Surface Chemistry
Open this publication in new window or tab >>Combined Molecular Dynamics and Embedded-Cluster Calculations in Metal Oxide Surface Chemistry
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development and improvement of the functionality of metal oxides in heterogeneous catalysis and other surface chemical processes can greatly benefit from an atomic-level understanding of the surface chemistry. Atomistic calculations such as quantum mechanical (QM) calculations and molecular dynamics (MD) simulations can provide highly detailed information about the atomic and electronic structure, and constitute valuable complements to experimental surface science techniques.

In this thesis, an embedded-cluster approach for quantum mechanical calculations has been developed to model the surface chemistry of metal oxides. In particular, CO adsorption on the MgO(001) and CeO2(110) surfaces as well as O vacancy formation at the CeO2(110) surface have been investigated. The cluster model has been thoroughly tested by comparison with electronic structure calculations for the periodic slab model.

The chemical implications of distorted surface structures arising from the surface dynamics have been investigated by combining the QM embedded-cluster calculations with force-field based MD simulations. Here QM embedded-cluster calculations were performed using surface structures sampled from the MD simulations.

This combined MD+QM embedded-cluster procedure was applied to the CO adsorption on MgO(001) at 50 K and the O vacancy formation on CeO2(110) at 300 K. Significant thermal variations of the CO adsorption energy and the O vacancy formation energy were observed. It was found that these variations could be estimated using the force field of the MD simulation as an interaction model. With this approach, the QM results were extrapolated to higher temperature and doped systems.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2005. 52 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 130
Keyword
Inorganic chemistry, embedded-cluster, ab initio, molecular dynamics, metal oxide, ceria, magnesium oxide, adsorption, surface defect, Oorganisk kemi
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:uu:diva-6227 (URN)91-554-6422-X (ISBN)
Public defence
2006-01-19, Room 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15
Opponent
Supervisors
Available from: 2005-12-23 Created: 2005-12-23 Last updated: 2013-09-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Hermansson, Kersti

Search in DiVA

By author/editor
Hermansson, Kersti
By organisation
Department of Materials Chemistry
In the same journal
Journal of Physical Chemistry B
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 825 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf