Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ultrathin Gold Microelectrode Array using Polyelectrolyte Multilayers for Flexible and Transparent Electro-Optical Neural Interfaces
Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Informat & Commun Engn, Daegu 42988, South Korea..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience.ORCID iD: 0000-0001-5758-202X
Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Informat & Commun Engn, Daegu 42988, South Korea..
Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Informat & Commun Engn, Daegu 42988, South Korea..
Show others and affiliations
2022 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 32, no 9, article id 2106493Article in journal (Refereed) Published
Abstract [en]

Electro-optical neural interface technologies provide great potential and versatility in neuroscience research. High temporal resolution of electrical neural recording and high spatial resolution of optical neural interfacing such as calcium imaging or optogenetics complimentarily benefit the way information is accessed from neuronal networks. To develop a hybrid neural interface platform, it is necessary to build transparent, soft, flexible microelectrode arrays (MEAs) capable of measuring electrical signals without light-induced artifacts. In this work, flexible and transparent ultrathin (<10 nm) gold MEAs are developed using a biocompatible polyelectrolyte multilayer (PEM) metallic film nucleation-inducing seed layer. With the polymer seed layer, the thermally evaporated ultrathin gold film shows good conductivity while providing high optical transmittance and excellent mechanical flexibility. In addition, strong electrostatic interaction via the PEM alters the electrode-electrolyte interfaces, thereby reducing the electrode impedance and baseline noise level. With a simple modification of the fabrication process of the MEA using biocompatible materials, both excellent transmittance, and electrochemical interface characteristics are achieved, which is promising for efficient electro-optical neural interfaces.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH John Wiley & Sons, 2022. Vol. 32, no 9, article id 2106493
Keywords [en]
flexible electrodes, microelectrode arrays, neural interfaces, polyelectrolytes, transparent electrodes
National Category
Materials Chemistry Neurosciences
Identifiers
URN: urn:nbn:se:uu:diva-478347DOI: 10.1002/adfm.202106493ISI: 000720735800001OAI: oai:DiVA.org:uu-478347DiVA, id: diva2:1675556
Available from: 2022-06-23 Created: 2022-06-23 Last updated: 2024-01-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Rostedt Punga, Anna

Search in DiVA

By author/editor
Lee, Jee WoongHong, NariKwon, Hyuk-JunRostedt Punga, AnnaKang, Hongki
By organisation
Department of Neuroscience
In the same journal
Advanced Functional Materials
Materials ChemistryNeurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf