uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Micromachined S-band Patch Antenna with Reduced Dielectric Constant
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology, Ångström Space Technology Centre (ÅSTC).
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Signals and Systems Group.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology, Ångström Space Technology Centre (ÅSTC).
2006 (English)In: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 130-131, 478-484 p.Article in journal, Meeting abstract (Refereed) Published
Abstract [en]

A generic dielectric constant reduction method for silicon substrates is presented in detail along with a process description to produce variable dielectric layers for planar antennas. Virtually any dielectric constant below the value for solid silicon 11.9 can be produced down to the limit of structural durability. A first-order volumetric average yields a dielectric constant of 3.8 for the following bonded micromachined silicon substrates; small honeycomb cells with wall thickness of 16 μm and inner wall length of 87 μm are etched using deep reactive ion etch (DRIE) to 475 μm depth in each of two 525 μm 4 in. high ohmic wafers. These two wafers are bonded together with the etched side of both wafers facing each other. A manufactured coaxial-fed disk-patch S-band antenna illustrates the method to reduce the dielectric constant for a circular zone with a diameter of 50 mm. The antenna is designed for a center frequency of 2.5 GHz based on a lossless substrate with a dielectric constant of 3.8. Adjusting the simulation model to fit the measured values of the antenna indicates a dielectric constant of 2.2, a dielectric loss tangent of 0.002, a bulk conductivity loss of 0.006 S/m, and a resonance frequency of 3.2 GHz. A low frequency analysis in the interval 200–500 MHz with a lumped element model and a low frequency formula for the capacitance between the patch and ground plane indicates a dielectric constant in the order of 2.7–2.8. Based on measurements in an SEM, a corrected average dielectric constant is found to be 2.9. This correction is due to thinner walls than expected in the manufactured honeycomb structure. Antenna lobe characteristics have been measured with a half-power beamwidth of ∼76° in both the E-plane and H-plane at 3.2 GHz.

Place, publisher, year, edition, pages
2006. Vol. 130-131, 478-484 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-93966DOI: 10.1016/j.sna.2005.10.053OAI: oai:DiVA.org:uu-93966DiVA: diva2:167630
Conference
The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 5-9 June 2005, Seoul, Korea
Available from: 2006-01-19 Created: 2006-01-19 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Integrated Communications and Thermal Management Systems for Microsystem-based Spacecraft: A Multifunctional Microsystem Approach
Open this publication in new window or tab >>Integrated Communications and Thermal Management Systems for Microsystem-based Spacecraft: A Multifunctional Microsystem Approach
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the potential of multifunctional silicon-based microsystems for advanced integrated nanospacecraft (AIN). Especially, multifunctional microsystems with the coexistant functions of communications and thermal management implemented in multilayer silicon stacks are approached with systems study. Host vehicles, composed of microsystems, including micro/nano-spacecraft and spherical rovers are contemplated with respect to future performance and implications, system level design, and breadboard realizations. A module of great importance, named the "integrated communications and thermal management system for advanced integrated spacecraft" or ICTM, symbolizes the achievements within the field of self-contained microsystems and is a prioritized entity throughout the thesis. The ICTM is natively placable onboard all types of highly miniaturized craft.

The single AIN spacecraft and future clusters of these are investigated with respect to future full scale implementation of space systems designed and implemented with the distributed reconfigurable nanospacecraft cluster (DRNC) concept. Here, a true entanglement of microsystems technology (MST) and miniaturized spacecraft technology can revolutionize the applications, cost, and span of conceivable space missions.

An intended communications scenario supporting a data rate of 1 Mbps, for the transmitter, is achieved during 6 minutes with a maximum continuous power dissipation of 10 W. Thermal simulations support the expectation, of a thermally biased ICTM, that the module is capable of supporting this energy burst, by using the mechanisms of heat storage and heat switches, and still fulfilling the requirements imposed by AIN type of spacecraft. In addition, multiple functional surfaces for the ICTM are evaluated with respect to equilibrium temperature and process compatibility. The tailored surfaces provide temperature control using micromachining methods.

A design of a micromachined Ka-band front end with several MST enabled features is presented including e.g. vias, phase-shifters, and antennas. Similar antennas have been manufactured resulting in an evaluation of ring- and slot-antennas on silicon substrate. Based on a primitive version of the ICTM, a S-band patch antenna has been successfully implemented and characterized. Included in the thesis is a microthruster, an enabling technology for DRNC.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. 45 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 141
Keyword
Electronics, nanospacecraft, MST, MEMS, silicon, communication, thermal management, antenna, paraffin, PCM, multifunctional, microsystems, Elektronik
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:uu:diva-6316 (URN)91-554-6449-1 (ISBN)
Public defence
2006-02-10, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15
Opponent
Supervisors
Available from: 2006-01-19 Created: 2006-01-19 Last updated: 2013-09-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Ångström Space Technology Centre (ÅSTC)Signals and Systems Group
In the same journal
Sensors and Actuators A-Physical
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1002 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf