Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry.
Show others and affiliations
1999 (English)In: European Journal of Biochemistry, ISSN 0014-2956, E-ISSN 1432-1033, Vol. 266, no 2, p. 327-334Article in journal (Refereed) Published
Abstract [en]

Intact and partially acid hydrolyzed cellulose from Acetobacter xylinum were used as model substrates for cellulose hydrolysis by 1,4-β-d-glucan-cellobiohydrolase I (CBH I) and 1,4-β-d-endoglucanase I (EG I) from Trichoderma reesei. A high synergy between CBH I and EG I in simultaneous action was observed with intact bacterial cellulose (BC), but this synergistic effect was rapidly reduced by acid pretreatment of the cellulose. Moreover, a distinct synergistic effect was observed upon sequential endo–exo action on BC, but not on bacterial microcrystalline cellulose (BMCC). A mechanism for endo–exo synergism on crystalline cellulose is proposed where the simultaneous action of the enzymes counteract the decrease of activity caused by undesirable changes in the cellulose surface microstructure.

Place, publisher, year, edition, pages
1999. Vol. 266, no 2, p. 327-334
Keywords [en]
cellulase, cellulose, hydrolysis, synergism, simulation
National Category
Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-94511DOI: 10.1046/j.1432-1327.1999.00853.xISI: 000084444000002OAI: oai:DiVA.org:uu-94511DiVA, id: diva2:168383
Available from: 2006-05-09 Created: 2006-05-09 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Hydrolytic and Oxidative Mechanisms Involved in Cellulose Degradation
Open this publication in new window or tab >>Hydrolytic and Oxidative Mechanisms Involved in Cellulose Degradation
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The enzymatic degradation of cellulose is an important process in nature. This thesis has focused on the degradation of cellulose by enzymes from two cellulose-degrading fungi, Hypocrea jecorina and Phanerochaete chrysosporium, including both the action of the individual enzymes and their synergistic interplay.

The end-preference of cellobiohydrolases on crystalline cellulose was studied. Cellobiohydrolases belonging to glycosyl hydrolase (GH) family 7 were found to hydrolyse cellulose processively, starting from the reducing end of the cellulose chain. End-labelled cellulose can serve as a tool for functional classification of cellulases.

The synergy mechanism between endoglucanases and cellobiohydrolases was studied using substrates with different physical properties derived from bacterial cellulose. A new mechanism for synergism between endo- and exoacting enzymes was proposed whereby endoglucanases, in addition to creating nicks in amorphous parts of cellulose, thereby making new starting-points for processively acting cellobiohydrolases, also “polish” the cellulose surface by removing shorter chains from cellulose surface.

A new small endoglucanase belonging to the GH12 family was isolated and characterised. The proposed role of this enzyme is to make the cellulose in wood more accessible to other cellulases.

Oxygen conversion by cellobiose dehydrogenase was studied. Hydrogen peroxide produced by cellobiose dehydrogenase can be decomposed even by traces of certain metal ions into a hydroxyl radical and a hydroxyl ion. As an example, reduced metal ions will be continuously regenerated by cellobiose dehydrogenase, which thus stimulates the degradation.

Interactions between GH7 family cellobiohydrolases and o-nitrophenyl cellobioside were studied by fluorescence spectroscopy and kinetic tests. o-nitrophenyl cellobioside was used as indicator ligand to determine the dissociation constants for cellobiose binding to catalytically inactive Cel7A mutants by displacement binding experiments.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. p. 51
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 185
Keywords
Biochemistry, cellobiohydrolase, cellulase, cellulose, cellobiose dehydrogenase, endoglucanase, kinetics, synergism, competitive binding, Biokemi
Identifiers
urn:nbn:se:uu:diva-6888 (URN)91-554-6571-4 (ISBN)
Public defence
2006-05-31, Room B41, BMC, Husargatan 3, Uppsala, 10:15
Opponent
Supervisors
Available from: 2006-05-09 Created: 2006-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Nutt, AnuPettersson, GöranJohansson, Gunnar

Search in DiVA

By author/editor
Nutt, AnuPettersson, GöranJohansson, Gunnar
By organisation
Department of Biochemistry
In the same journal
European Journal of Biochemistry
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 959 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf