uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electronic and Molecular Surface Structure of a Polyene-diphenylaniline Dye Adsorbed from Solution onto Nanoporous TiO2
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Physics I.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
KTH, Organisk kemi / Organic chemistry.
Show others and affiliations
2007 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 111, no 24, 8580-8586 p.Article in journal (Refereed) Published
Abstract [en]

The surface electronic and molecular structure of a new organic chromophore useful for dye-sensitized nanostructured solar cells has been investigated by means of electron spectroscopy. Initially the use of a simple molecular system containing the polyene-diphenylaniline chromophore in a solar cell device was verified. The electronic and molecular surface structure of the functional dye-sensitized interface was then investigated in detail by a combination of core level spectroscopy, valence level spectroscopy, X-ray absorption spectroscopy, and resonant photoemission spectroscopy. The results indicate a dominating orientation of the molecule at the surface, having the diphenylaniline moiety pointing out from the surface. Valence level spectroscopy, X-ray absorption spectroscopy, and resonant photoemission spectroscopy were used to experimentally delineate the frontier electronic structure of the molecule, and the experimental spectra were analyzed against theoretical spectra, based on density functional theory. Together the investigation gives insight into energy matching of the molecular electronic states with respect to the TiO2 substrate as well as the localization of the frontier electronic states and the direction of the charge-transfer absorption process with regards to the TiO2 surface.

Place, publisher, year, edition, pages
2007. Vol. 111, no 24, 8580-8586 p.
National Category
Chemical Sciences
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-94530DOI: 10.1021/jp068771yISI: 000247215200028OAI: oai:DiVA.org:uu-94530DiVA: diva2:168407
Available from: 2006-05-08 Created: 2006-05-08 Last updated: 2011-09-01Bibliographically approved
In thesis
1. Interfaces in Dye-Sensitized Oxide / Hole-Conductor Heterojunctions for Solar Cell Applications
Open this publication in new window or tab >>Interfaces in Dye-Sensitized Oxide / Hole-Conductor Heterojunctions for Solar Cell Applications
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanoporous dye-sensitized solar cells (DSSC) are promising devices for solar to electric energy conversion. In this thesis photoelectron spectroscopy (PES), x-ray absorption spectroscopy (XAS) and photovoltaic measurements are used for studies of the key interfaces in the DSSC.

Photovoltaic properties of new combinations of TiO2/dye/hole-conductor heterojunctions were demonstrated and their interfacial structures were studied. Three different types of hole-conductor materials were investigated: Triarylamine derivatives, a conducting polymer and CuI. The difference in photocurrent and photovoltage properties of the heterojunction due to small changes in the hole-conductor material was followed. Also a series of dye molecules were used to measure the influence of the dye on the photovoltaic properties. Differences in both the energy-level matching and the geometric structure of the interfaces in the different heterojunctions were studied by PES. This combination of photovoltaic and PES measurements shows the possibility to link the interfacial electronic and molecular structure to the functional properties of the device.

Three effective dyes used in the DSSC, Ru(dcbpy)2(NCS)2, Ru(tcterpy)(NCS)3 and an organic dye were studied in detail using PES and XAS and resonant core hole decay spectroscopy. The results gave information of the frontier electronic structure of the dyes and how the dyes are bonded to the TiO2 surface.

Finally, the hole-conductor mechanism in a conducting polymer was investigated theoretically using semi-empirical and ab-initio methods.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. 53 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 188
Keyword
Physics, Photoelectron spectroscopy, Solar cells, Heterojunction, Fysik
Identifiers
urn:nbn:se:uu:diva-6892 (URN)91-554-6575-7 (ISBN)
Public defence
2006-05-29, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsv.1, Uppsala, 13:15
Opponent
Supervisors
Available from: 2006-05-08 Created: 2006-05-08 Last updated: 2012-10-09Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Johansson, Erik M.J.Edvinsson, TomasHagfeldt, AndersSiegbahn, HansRensmo, Håkan

Search in DiVA

By author/editor
Johansson, Erik M.J.Edvinsson, TomasHagfeldt, AndersSiegbahn, HansRensmo, Håkan
By organisation
Physics IInorganic Chemistry
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 912 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf