Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Drug Release Measurements in Limited Amounts of Liquid: A Suppository Formulation Study
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacy.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
2006 (English)In: Current Drug Delivery, ISSN 1567-2018, E-ISSN 1875-5704, Vol. 3, no 3, p. 299-306(8)Article in journal (Refereed) Published
Abstract [en]

A novel method for the investigation of drug formulations in limited liquid volumes is presented. The experimental setup consists of a measurement cell containing an absorbent sponge cloth placed between two parallel electrodes. Conductivity measurements are used to monitor the drug release from the dosage form. By varying the amount of water contained in the absorbent cloth surrounding the dosage form, it is possible to measure the drug release performance of the dosage form in very limited amounts of water. The method was employed to test four different tablet formulations consisting of the model drug NaCl incorporated in excipient matrices of hard fat, polyethylene glycol, microcrystalline cellulose and a mixture of microcrystalline cellulose and croscarmellose sodium (Ac-Di-Sol). The drug release rates of the different formulations in limited water volumes differed markedly from the release rates in an excess of water. Whereas the release rates from all tablet types in an excess of water showed only minor differences among the tablet types, the release rates from the tablets formulated with disintegrating e

Place, publisher, year, edition, pages
2006. Vol. 3, no 3, p. 299-306(8)
Keywords [en]
Biological Availability, Carboxymethylcellulose/chemistry, Cellulose/chemistry, Chemistry; Pharmaceutical/instrumentation/*methods, Comparative Study, Electric Conductivity, Excipients, Fats/chemistry, Polyethylene Glycols/chemistry, Research Support; Non-U.S. Gov't, Sodium Chloride/administration & dosage/chemistry/*pharmacokinetics, Suppositories/*chemistry, Tablets, Water/chemistry
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-94617DOI: 10.2174/156720106777731109OAI: oai:DiVA.org:uu-94617DiVA, id: diva2:168522
Available from: 2006-05-09 Created: 2006-05-09 Last updated: 2017-12-14
In thesis
1. Electrodynamic and Mechanical Spectroscopy Method Development and Analysis Relating to Materials with Biotechnological Applications
Open this publication in new window or tab >>Electrodynamic and Mechanical Spectroscopy Method Development and Analysis Relating to Materials with Biotechnological Applications
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Materials with biotechnological applications and materials that interact with the biological environment play an ever increasing role in our lives and society. In order to be able to tailor specific properties of these materials to suit their intended applications, it is important to gain a deeper understanding of the relationship between the material structure and its function.

This thesis contributes to the goal of achieving a better understanding of the functional properties of materials through the development of novel characterizing methods as well as the analysis of such materials. Electrodynamic and mechanical spectroscopy methods are developed or employed in the characterization of three classes of materials, namely, pharmaceutical, biomedical and biological materials.

Two electrodynamic methods utilizing conductivity measurements were developed for the investigation of drug release from pharmaceutical dosage forms, particularly in low liquid volumes. Furthermore, a mechanical spectroscopy method based on the split Hopkinson pressure bar setup was developed for the viscoelastic characterization of pharmaceutical compacts. It was shown that this method is a valuable complement to other methods of characterization.

Dielectric spectroscopy was integrated with microfabrication techniques to create a method for bacteria detection in a biotechnological application. As well, dielectric spectroscopy was used in the characterization of a novel biomimetic ionomer and was demonstrated to be a powerful tool for studying the bulk molecular dynamics of this functional material.

The work presented in this thesis not only provides an enhanced understanding of materials and their functional properties, but also presents new methods that should be useful for the future characterization of such materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. p. 71
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 196
Keywords
Engineering physics, Teknisk fysik
Identifiers
urn:nbn:se:uu:diva-6932 (URN)91-554-6591-9 (ISBN)
Public defence
2006-05-30, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2006-05-09 Created: 2006-05-09 Last updated: 2010-04-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Strømme, Maria
By organisation
Nanotechnology and Functional MaterialsDepartment of Pharmacy
In the same journal
Current Drug Delivery
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1001 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf