uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nondestructive assay of spent nuclear fuel with gamma-ray spectroscopy
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Nuclear and Particle Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Show others and affiliations
2006 (English)In: Annals of Nuclear Energy, Vol. 33, no 5, 427-438 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2006. Vol. 33, no 5, 427-438 p.
National Category
Subatomic Physics
Research subject
Applied Nuclear Physics; Physics with specialization in Applied Nuclear Physics
Identifiers
URN: urn:nbn:se:uu:diva-94788OAI: oai:DiVA.org:uu-94788DiVA: diva2:168770
Available from: 2006-09-08 Created: 2006-09-08 Last updated: 2012-03-09
In thesis
1. Applications of Gamma Ray Spectroscopy of Spent Nuclear Fuel for Safeguards and Encapsulation
Open this publication in new window or tab >>Applications of Gamma Ray Spectroscopy of Spent Nuclear Fuel for Safeguards and Encapsulation
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nuclear energy is currently one of the world’s main sources of electricity. Closely connected to the use of nuclear energy are important issues such as the nonproliferation of fissile material that may potentially used in nuclear weapons (safeguards), and the management of the highly radioactive nuclear waste. This thesis addresses both these issues by contributing to the development of new experimental methods for ensuring safe and secure handling of the waste, with focus on methods to be used prior to encapsulation and final storage.

The methods rely on high resolution gamma ray spectroscopy (HRGS), involving the measurement and analysis of emitted gamma radiation from the fission products 137Cs, 134Cs and 154Eu. This technique is nondestructive, making it relatively nonintrusive with respect to the normal operation of the nuclear facilities.

For the safeguards issue, it is important to experimentally verify the presence and identity of nuclear fuel assemblies and also that the fuel has experienced normal, civilian reactor operation. It has been shown in this thesis that the HRGS method may be used for verifying operator declared fuel parameters such as burnup, cooling time and irradiation history. In the experimental part of the work, the burnup and the cooling time has been determined with an accuracy of 1.6% and 1.5%, respectively (1 σ).

A technique has also been demonstrated, utilizing the ratio 134Cs/154Eu, with which it is possible to determine whether a fuel assembly is of MOX or LEU type. This is of interest for safeguards as well as for the safe operation of a final storage facility.

As an improvement to the HRGS technique, measuring a part of the fuel assembly length in order to reduce measurement time has been suggested and investigated. A theoretical case for partial defect verification has also been studied as an extension of the HRGS technique.

Finally, HRGS has been used for determining the decay heat in spent nuclear fuel assemblies, which is of importance for the safe operation of a final storage facility. This application is based on the radiation from 137Cs, and the accuracy demonstrated was within 3% (1 σ).

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2006. 81 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 212
Keyword
Nuclear physics, gamma radiation, spectroscopy, spent nuclear fuel, safeguards, HRGS, MOX, Kärnfysik
Identifiers
urn:nbn:se:uu:diva-7116 (URN)91-554-6637-0 (ISBN)
Public defence
2006-09-29, Polhemsalen, Ångströmlaboratoriet, Uppsala, 09:00
Opponent
Supervisors
Available from: 2006-09-08 Created: 2006-09-08Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Jacobsson Svärd, Staffan

Search in DiVA

By author/editor
Jacobsson Svärd, Staffan
By organisation
Department of Nuclear and Particle PhysicsApplied Nuclear Physics
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 483 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf