Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Monte-Carlo Sampling Approach to Model Selection: A Primer
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Automatic control. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Systems and Control. Royal Swedish Acad Engn Sci, Stockholm, Sweden.;US Natl Acad Engn, Washington, DC USA.;Romanian Acad, Bucharest, Romania.;European Acad Sci, Salzburg, Austria.;Swedish Royal Soc Sci, Stockholm, Sweden.;European Assoc Signal Proc, IEEE, Herent, Belgium.;Royal Stat Soc, London, England..ORCID iD: 0000-0002-7957-3711
Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Peoples R China..
Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Peoples R China..
2022 (English)In: IEEE signal processing magazine (Print), ISSN 1053-5888, E-ISSN 1558-0792, Vol. 39, no 5, p. 85-92Article in journal, Editorial material (Other academic) Published
Abstract [en]

Any data modeling exercise has two main components: parameter estimation and model selection. The latter will be the topic of this lecture note. More concretely, we introduce several Monte-Carlo sampling-based rules for model selection using the maximum a posteriori (MAP) approach. Model selection problems are omnipresent in signal processing applications: examples include selecting the order of an autoregressive predictor, the length of the impulse response of a communication channel, the number of source signals impinging on an array of sensors, the order of a polynomial trend, the number of components of a nuclear magnetic resonance signal, and so on.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2022. Vol. 39, no 5, p. 85-92
Keywords [en]
Monte Carlo methods, Parameter estimation, Array signal processing, Magnetic sensors, Communication channels, Predictive models, Market research
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:uu:diva-484795DOI: 10.1109/MSP.2022.3177872ISI: 000848226700020OAI: oai:DiVA.org:uu-484795DiVA, id: diva2:1696771
Funder
Swedish Research Council, 2017-04610Swedish Research Council, 2016-06079Available from: 2022-09-19 Created: 2022-09-19 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Stoica, Peter

Search in DiVA

By author/editor
Stoica, Peter
By organisation
Automatic controlDivision of Systems and Control
In the same journal
IEEE signal processing magazine (Print)
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf