uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theory and Experiment on an Elastically Moored Cylindrical Buoy
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Division for Electricity and Lightning Research.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Division for Electricity and Lightning Research.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Division for Electricity and Lightning Research.
2006 (English)In: IEEE Journal of Oceanic Engineering, ISSN 0364-9059, E-ISSN 1558-1691, Vol. 31, no 4, 959-963 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we compare simulated forces and accelerations for a moored floating buoy with full-scale experimental results in real ocean waves. The buoy is moored with a wire connected by springs to a concrete foundation situated at the seafloor. This study aims to develop a computer model using potential theory with a linearized free-surface boundary condition to describe the motion of such a system. The intention is to use the model for future study of wave-energy absorption and design of converters. Another objective is to see how complex a model is required to get accurate results. The method used is computationally fast and makes it possible to couple linear buoy wave interaction with nonlinear generator models, so that different loads and latching can be studied. A computationally fast method is required to model farms of wave-energy converters.

Place, publisher, year, edition, pages
2006. Vol. 31, no 4, 959-963 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-95681DOI: 10.1109/JOE.2006.880387ISI: 000244319300022OAI: oai:DiVA.org:uu-95681DiVA: diva2:169990
Available from: 2007-03-23 Created: 2007-03-23 Last updated: 2016-06-22Bibliographically approved
In thesis
1. Modelling and Experimental Verification of Direct Drive Wave Energy Conversion: Buoy-Generator Dynamics
Open this publication in new window or tab >>Modelling and Experimental Verification of Direct Drive Wave Energy Conversion: Buoy-Generator Dynamics
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is focused on development of models and modelling of a wave energy converter in operation. Through the thesis linear potential wave theory has been used to describe the wave-buoy interaction. The differences lie in the generator models, in the simplest model the generator is a mechanical damper characterized by a damping factor. In the most advanced generator model the magnetic fields is calculated the by a FE-method, which gives detailed description of the electric properties and the effect it has on the buoy dynamics. Moreover, an equivalent circuit description of the generator has been tested. It has the same accuracy as the field based model but with a strongly enhanced CPU time. All models are verified against full scale experiments. The models are intended to be used for design of the next generation wave energy converters. Further, the developed models have also been used to study what effect buoy geometry and generator damping have on the ability to energy absorption.

In the spring 2006 a full scale wave energy converter was installed at the west coast of Sweden. It was in operation and collected data during three months. During that period the load resistance was varied in order to study the effect on the energy absorption. These collected data was then used in the verification of the developed models.

In the year 2002 a wave energy project started at Uppsala University; this work is a part of that larger project which intendeds to develop a viable wave energy conversion concept.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2007. 76 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 287
Keyword
Engineering physics, Wave energy, Potential wave theory, Linear generator, Simulations, Experiments, Point absorber, FEM, Equivalent circuit theory, Teknisk fysik
National Category
Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-7785 (URN)978-91-554-6850-7 (ISBN)
Public defence
2007-04-13, Polhemsalen, Ångströmlaboratoriet, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2007-03-23 Created: 2007-03-23 Last updated: 2010-11-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Leijon, Mats

Search in DiVA

By author/editor
Leijon, Mats
By organisation
Division for Electricity and Lightning Research
In the same journal
IEEE Journal of Oceanic Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 580 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf