uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural and magnetic aspects of multilayer interfaces
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
2004 (English)In: Journal of Magnetism and Magnetic Materials, ISSN 0304-8853, Vol. 272-276, no Suppl., E941-E942 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2004. Vol. 272-276, no Suppl., E941-E942 p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-96089DOI: 10.1016/j.jmmm.2003.12.1165OAI: oai:DiVA.org:uu-96089DiVA: diva2:170551
Available from: 2007-09-03 Created: 2007-09-03 Last updated: 2012-03-27Bibliographically approved
In thesis
1. Spin Dynamics and Magnetic Multilayers
Open this publication in new window or tab >>Spin Dynamics and Magnetic Multilayers
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Theoretical studies based on first-principles theory are presented for a number of different magnetic systems. The first part of the thesis concerns spin dynamics and the second part concerns properties of magnetic multilayers. The theoretical treatment is based on electronic structure calculations performed by means of density functional theory.

A method is developed for simulating atomistic spin dynamics at finite temperatures, which is based on solving the equations of motion for the atomic spins by means of Langevin dynamics. The method relies on a mapping of the interatomic exchange interactions from density functional theory to a Heisenberg Hamiltonian. Simulations are performed for various magnetic systems and processes beyond the reach of conventional micromagnetism. As an example, magnetization dynamics in the limit of large magnetic and anisotropy fields is explored. Moreover, the method is applied to studying the dynamics of systems with complex atomic order such as the diluted magnetic semiconductor MnGaAs and the spin glass alloy CuMn. The method is also applied to a Fe thin film and a Fe/Cr/Fe trilayer system, where the limits of ultrafast switching are explored. Current induced magnetization dynamics is investigated by calculating the current induced spin-transfer torque by means of density functional theory combined with the relaxation time approximation and semi-classical Boltzmann theory. The current induced torque is calculated for the helical spin-density waves in Er and fcc Fe, where the current is found to promote a rigid rotation of the magnetic order.

Properties of magnetic multilayers composed of magnetic and nonmagnetic layers are investigated by means of the Korringa-Kohn-Rostocker interface Green's function method. Multilayer properties such as magnetic moments, interlayer exchange coupling and ordering temperatures are calculated and compared with experiments, with focus on understanding the influence of interface quality. Moreover, the influence on the interlayer exchange coupling of alloying the nonmagnetic spacer layers with small amounts of a magnetic impurity is investigated.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2007. x, 74 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 326
Keyword
Physics, magnetism, electronic structure, density functional theory, spin dynamics, spin-transfer torque, spin-density wave, multilayer, interface structure, Fysik
National Category
Physical Sciences
Identifiers
urn:nbn:se:uu:diva-8168 (URN)978-91-554-6944-3 (ISBN)
Public defence
2007-09-21, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15
Opponent
Supervisors
Available from: 2007-09-03 Created: 2007-09-03 Last updated: 2012-03-28Bibliographically approved
2. Electronic Structure and Statistical Methods Applied to Nanomagnetism, Diluted Magnetic Semiconductors and Spintronics
Open this publication in new window or tab >>Electronic Structure and Statistical Methods Applied to Nanomagnetism, Diluted Magnetic Semiconductors and Spintronics
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is divided in three parts. In the first part, a study of materials aimed for spintronics applications is presented. More specifically, calculations of the critical temperature in diluted magnetic semiconductors (DMS) and half-metallic ferromagnets are presented using a combination of electronic structure and statistical methods. It is shown that disorder and randomness of the magnetic atoms in DMS materials play a very important role in the determination of the critical temperature.

The second part treats materials in reduced dimensions. Studies of multilayer and trilayer systems are presented. A theoretical model that incorporates interdiffusion in a multilayer is developed that gives better agreement with experimental observations. Using Monte Carlo simulations, the observed magnetic properties in the trilayer system Ni/Cu/Co at finite temperatures are qualitatively reproduced.

In the third part, electronic structure calculations of complex Mn-based compounds displaying noncollinear magnetism are presented. The calculations reproduce with high accuracy the observed magnetic properties in these compounds. Furthermore, a model based on the electronic structure of the necessary conditions for noncollinear magnetism is presented.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2005. x+70 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 32
Keyword
Materials science, spintronics, magnetism, Monte Carlo, critical temperature, exchange interactions, percolation, disorder, noncollinear, electronic structure, Materialvetenskap
National Category
Materials Engineering
Identifiers
urn:nbn:se:uu:diva-5732 (URN)91-554-6202-2 (ISBN)
Public defence
2005-04-29, Room 4001, Ångströmlaboratoriet, 10:15
Opponent
Supervisors
Available from: 2005-04-08 Created: 2005-04-08 Last updated: 2013-06-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Bergqvist, LarsSkubic, BjörnEriksson, Olle

Search in DiVA

By author/editor
Bergqvist, LarsSkubic, BjörnEriksson, Olle
By organisation
Condensed Matter Theory
In the same journal
Journal of Magnetism and Magnetic Materials
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 533 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf