uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Effective Structure Theorems for Spaces of Compactly Supported Distributions
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Mathematics.
Manuscript (Other academic)
URN: urn:nbn:se:uu:diva-96208OAI: oai:DiVA.org:uu-96208DiVA: diva2:170705
Available from: 2007-09-21 Created: 2007-09-21 Last updated: 2010-01-13Bibliographically approved
In thesis
1. Effective Distribution Theory
Open this publication in new window or tab >>Effective Distribution Theory
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we introduce and study a notion of effectivity (or computability) for test functions and for distributions. This is done using the theory of effective (Scott-Ershov) domains and effective domain representations.

To be able to construct effective domain representations of the spaces of test functions considered in distribution theory we need to develop the theory of admissible domain representations over countable pseudobases. This is done in the first paper of the thesis. To construct an effective domain representation of the space of distributions, we introduce and develop a notion of partial continuous function on domains. This is done in the second paper of the thesis. In the third paper we apply the results from the first two papers to develop an effective theory of distributions using effective domains. We prove that the vector space operations on each space, as well as the standard embeddings into the space of distributions effectivise. We also prove that the Fourier transform (as well as its inverse) on the space of tempered distributions is effective. Finally, we show how to use convolution to compute primitives on the space of distributions. In the last paper we investigate the effective properties of a structure theorem for the space of distributions with compact support. We show that each of the four characterisations of the class of compactly supported distributions in the structure theorem gives rise to an effective domain representation of the space. We then use effective reductions (and Turing-reductions) to study the reducibility properties of these four representations. We prove that three of the four representations are effectively equivalent, and furthermore, that all four representations are Turing-equivalent. Finally, we consider a similar structure theorem for the space of distributions supported at 0.

Place, publisher, year, edition, pages
Uppsala: Matematiska institutionen, 2007. 36 p.
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 50
Computable mathematics, computable analysis, domain theory, domain representations, distribution theory.
National Category
Algebra and Logic
urn:nbn:se:uu:diva-8210 (URN)978-91-506-1956-0 (ISBN)
Public defence
2007-10-12, 2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Polacksbacken, Uppsala, 10:15
Available from: 2007-09-21 Created: 2007-09-21Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Mathematics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 156 hits
ReferencesLink to record
Permanent link

Direct link