Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of modelling assumptions on Cherenkov light intensity predictions
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0001-8207-3462
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0002-5133-6829
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0002-6596-1828
2022 (English)Conference paper, Published paper (Other academic)
Abstract [en]

The Digital Cherenkov Viewing Device (DCVD) is one of the instruments available to IAEA inspectors to verify spent nuclear fuel in wet storage. The DCVD can be used for partial defect verification, verifying that 50% or more of a fuel assembly has not been diverted. The partial defect verification relies on a comparison between measured and predicted intensities, based on operator fuel declarations. Recently, IAEA inspectors have encountered spent fuels with short cooling times where there were systematic differences between predictions and measurements. Through the Swedish support program, this deviation was investigated, by studying various modelling assumptions that could cause the discrepancy.

The predominant cause of the discrepancy was beta-decay electrons, passing through the fuel cladding and entering the water with sufficient energy to directly produce Cherenkov light. Analysis of measurement data for a set of fuels where the discrepancy was found to be pronounced revealed that for modern fuel designs with thin claddings the beta contribution is enhanced, and for short-cooled fuels additional beta-decaying isotopes are abundant and must be considered. Furthermore, the data showed that for nuclear fuels that had not reached the discharge burnup, the fuel irradiation history may cause a relative enhancement of the abundance of beta-decaying isotopes relative to other isotopes causing Cherenkov light. Other studied modelling assumptions, such as void, burnable absorbers and using binned gamma spectra, showed that they only introduced a modest bias, and proper default values and data handling can mitigate it. 

A method to predict the direct beta contribution to the Cherenkov light intensity was developed, which can ensure that the observed biases will be eliminated from future verification campaigns. It is advised that this enhanced prediction method be included in the DCVD software, and made available to inspectors.

Place, publisher, year, edition, pages
2022.
Keywords [en]
Nuclear safeguards, Cherenkov light, DCVD, spent fuel verification, modelling
National Category
Subatomic Physics
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
URN: urn:nbn:se:uu:diva-488103OAI: oai:DiVA.org:uu-488103DiVA, id: diva2:1709615
Conference
IAEA Safeguards Symposium, Vienna, 31 October-4 november 2022
Funder
Swedish Radiation Safety Authority, SSM2022-873Swedish National Infrastructure for Computing (SNIC), SNIC2019-8-112Available from: 2022-11-09 Created: 2022-11-09 Last updated: 2022-11-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference information

Authority records

Branger, ErikGrape, SophiePreston, Markus

Search in DiVA

By author/editor
Branger, ErikGrape, SophiePreston, Markus
By organisation
Applied Nuclear Physics
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 89 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf