Ultrafast perturbation of magnetic domains by optical pumping in a ferromagnetic multilayerSLAC Natl Accelerator Lab, Linac Coherent Light Source, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
SLAC Natl Accelerator Lab, Linac Coherent Light Source, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA..
SLAC Natl Accelerator Lab, Linac Coherent Light Source, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.;MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02421 USA..
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.;Univ Colorado, JILA, Boulder, CO 80309 USA..
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.;Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA..
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA..
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA.;Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA..
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA..
NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA..
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.;Univ Colorado, JILA, Boulder, CO 80309 USA..
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.;Univ Colorado, JILA, Boulder, CO 80309 USA..
Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA..
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.;Univ Colorado, JILA, Boulder, CO 80309 USA..
Univ Colorado, Dept Phys, Boulder, CO 80309 USA.;Univ Colorado, JILA, Boulder, CO 80309 USA..
Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA..
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA..
NIST, Quantum Electromagnet Div, Boulder, CO 80305 USA..
Show others and affiliations
2022 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 106, no 14, article id 144422Article in journal (Refereed) Published
Abstract [en]
Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up to fifth order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps. In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by 6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In particular, we demonstrate that a radial shift explained by domain-wall broadening can be ruled out. With the unprecedented dynamic range of our data, our results provide convincing evidence that labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium conditions, albeit the mechanism inducing the perturbations remains yet to be clarified.
Place, publisher, year, edition, pages
American Physical Society, 2022. Vol. 106, no 14, article id 144422
National Category
Condensed Matter Physics Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:uu:diva-488570DOI: 10.1103/PhysRevB.106.144422ISI: 000879551600002OAI: oai:DiVA.org:uu-488570DiVA, id: diva2:1711781
2022-11-182022-11-182022-11-18Bibliographically approved