uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Functionally diverging molecular quasi-species evolve by crossing two enzymes
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry.
Show others and affiliations
2006 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 103, no 29, 10866-10870 p.Article in journal (Refereed) Published
Abstract [en]

Molecular evolution is frequently portrayed by structural relationships, but delineation of separate functional species is more elusive. We have generated enzyme variants by stochastic recombinations of DNA encoding two homologous detoxication enzymes, human glutathione transferases M1-1 and M2-2, and explored their catalytic versatilities. Sampled mutants were screened for activities with eight alternative substrates, and the activity fingerprints were subjected to principal component analysis. This phenotype characterization clearly identified at least three distributions of substrate selectivity, where one was orthogonal to those of the parent-like distributions. This approach to evolutionary data mining serves to identify emerging molecular quasi-species and indicates potential trajectories available for further protein evolution.

Place, publisher, year, edition, pages
2006. Vol. 103, no 29, 10866-10870 p.
Keyword [en]
directed evolution, DNA shuffling, glutathione transferase, library, multivariate analysis
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-97178DOI: 10.1073/pnas.0604030103ISI: 000239327200010PubMedID: 16829572OAI: oai:DiVA.org:uu-97178DiVA: diva2:172001
Available from: 2008-04-29 Created: 2008-04-29 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Directed Evolution of Glutathione Transferases Guided by Multivariate Data Analysis
Open this publication in new window or tab >>Directed Evolution of Glutathione Transferases Guided by Multivariate Data Analysis
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Evolution of enzymes with novel functional properties has gained much attention in recent years. Naturally evolved enzymes are adapted to work in living cells under physiological conditions, circumstances that are not always available for industrial processes calling for novel and better catalysts. Furthermore, altering enzyme function also affords insight into how enzymes work and how natural evolution operates.

Previous investigations have explored catalytic properties in the directed evolution of mutant libraries with high sequence variation. Before this study was initiated, functional analysis of mutant libraries was, to a large extent, restricted to uni- or bivariate methods. Consequently, there was a need to apply multivariate data analysis (MVA) techniques in this context. Directed evolution was approached by DNA shuffling of glutathione transferases (GSTs) in this thesis. GSTs are multifarious enzymes that have detoxication of both exo- and endogenous compounds as their primary function. They catalyze the nucleophilic attack by the tripeptide glutathione on many different electrophilic substrates.

Several multivariate analysis tools, e.g. principal component (PC), hierarchical cluster, and K-means cluster analyses, were applied to large mutant libraries assayed with a battery of GST substrates. By this approach, evolvable units (quasi-species) fit for further evolution were identified. It was clear that different substrates undergoing different kinds of chemical transformation can group together in a multi-dimensional substrate-activity space, thus being responsible for a certain quasi-species cluster. Furthermore, the importance of the chemical environment, or substrate matrix, in enzyme evolution was recognized. Diverging substrate selectivity profiles among homologous enzymes acting on substrates performing the same kind of chemistry were identified by MVA. Important structure-function activity relationships with the prodrug azathioprine were elucidated by segment analysis of a shuffled GST mutant library. Together, these results illustrate important methods applied to molecular enzyme evolution.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2008. 82 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 431
Keyword
Biochemistry, DNA shuffling, substrate selectivity, mutant library, glutathione transferase, multivariate data analysis, prodrug, Biokemi
Identifiers
urn:nbn:se:uu:diva-8718 (URN)978-91-554-7194-1 (ISBN)
Public defence
2008-05-23, B7:101a, BMC, Box 576, Uppsala University, SE-75123 Uppsala, 09:15
Opponent
Supervisors
Available from: 2008-04-29 Created: 2008-04-29Bibliographically approved
2. The Quest for Functional Quasi-Species in Glutathione Transferase Libraries
Open this publication in new window or tab >>The Quest for Functional Quasi-Species in Glutathione Transferase Libraries
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Glutathione transferases (GSTs) are good candidates for investigations of enzyme evolution, due to their broad substrate specificities and structural homology. The primary role of GSTs is to act as phase II detoxifying enzymes protecting the cell from toxic compounds of both endo- and exogenous origins. The detoxification is conducted via conjugation with glutathione (GSH), which facilitates their removal from the body.

The work presented in this thesis has supported a theory for enzyme evolution when the multiple pathway to novel functions can been seen to involve a “generalist” state from which “specialist” states with a new activities can evolve. The generalist has broader specificity and lower activity than the specialist. The term quasi-species is used for a group or cluster of enzyme variants with similar functional properties, and this entity has been suggested as the fittest group for further evolution. This is based on studies of the evolution of new GST variants in two generation.

Three diverging clusters or quasi-species, with diverging substrate selectivity, were identified from a GST M1/M2 library, by using directed evolution (family DNA shuffling), multiple substrate screening and multivariate statistics as tools. One of the clusters was M1-like and the other was M2-like, both functionally and structurally. The third quasi-species diverged orthogonally from the parent-like distributions. Its functional character can be referred to as a “generalist” as it had lower activities with most of the substrates assayed except for epoxy-3-(4-nitrophenoxy)-propane (EPNP) and p-nitrophenyl acetate (pNPA).

Another round of family DNA shuffling was made with selected variants from the “generalist” quasi-species. From the second generation three quasi-species emerged with diverging functions and sequences. The major cluster contained enzyme variants that represented a direct propagation of the generalists. Diverging from the generalists was a cluster with high specificity with isothiocyanates (ITCs). Increased ITC specificity and decreased epoxide specificity was observed among the novel variants (specialists). The change in functional properties was attributed to a Tyr116His substitution in the active site.

These results demonstrate the usefulness of multivariate analysis in the quest for novel enzyme quasi-species in a multi-substrate space, and how minimal changes in the active site can generate distinctive functional properties. An application of our method could be identification of enzyme quasi-species that have lost their sensitivity with alternative inhibitors.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2010. 60 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 737
Keyword
glutathione transferase, directed evolution, multivariate analysis, quasi-species, isothiocyanates
Research subject
Biochemistry
Identifiers
urn:nbn:se:uu:diva-122378 (URN)978-91-554-7794-3 (ISBN)
Public defence
2010-05-19, B22, BMC, Husargatan 3, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2010-04-28 Created: 2010-04-09 Last updated: 2011-06-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Kurtovic, SanelaRunarsdottir, ArnaMannervik, Bengt

Search in DiVA

By author/editor
Kurtovic, SanelaRunarsdottir, ArnaMannervik, Bengt
By organisation
Department of Biochemistry and Organic Chemistry
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 480 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf