uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Organic phosphorus composition in Baltic Sea sediment: origin and degradability on a molecular level
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Chemistry, Department of Physical and Analytical Chemistry.
Show others and affiliations
Manuscript (Other academic)
URN: urn:nbn:se:uu:diva-97628OAI: oai:DiVA.org:uu-97628DiVA: diva2:172646
Available from: 2008-10-15 Created: 2008-10-15 Last updated: 2010-01-13Bibliographically approved
In thesis
1. Organic Phosphorus Compounds in Aquatic Sediments: Towards Molecular Identification with Mass Spectrometry
Open this publication in new window or tab >>Organic Phosphorus Compounds in Aquatic Sediments: Towards Molecular Identification with Mass Spectrometry
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Phosphorus (P) regulates trophic status in most aquatic systems. However, only bioavailable P contributes to primary production. In most lakes and shallow seas, mineralisation of sediment P into its bioavailable form and its release to the water column is important for maintaining primary production. Sediment organic P forms a substantial proportion of this P to be mineralised and can originate from different sources on land (farmland, forests, etc.) or from primary production in the lake. These organic P forms can thus be expected to have differing composition, degradability and recyclable P content.

Knowledge of the chemical structure of sediment organic P compounds is scarce, mainly due to lack of appropriate analytical techniques. The commonly used 31P-nuclear magnetic resonance (31P-NMR) technique, only identifies P binding groups, so a mass spectrometric (MS) analysis method was developed that allows individual sediment organic P compounds to be identified.

EDTA as pre-extractant resulted in the highest P yield in subsequent NaOH extraction. Extracted organic P compound groups were identified using 31P-NMR. For identification of specific P compounds with MS, a sample preparation method prior to electrospray tandem mass spectrometry (ESI-MS/MS) analysis was developed. Liquid chromatography (LC) with porous graphitic carbon prior to ESI-MS/MS enhanced sensitivity and selectivity, enabling several of the ions detected to be identified as nucleotides. 31P-NMR analysis showed P monoesters to be the most stabile P compounds throughout a lake sediment profile. The developed LC-ESI-MS/MS analysis method revealed that some monoester-P (nucleotides) were labile, while other P compounds increased in concentration with Baltic Sea sediment depth and were therefore considered stabile. Differences in patterns of P compounds detected were also shown depending on catchment characteristics in relation to Baltic Sea sediment age.

For cost-effective management of eutrophication, knowledge of the sources of degradable organic P forms, contributing to internal loading, is needed. This thesis showed the developed LC-ESI-MS/MS analysis method to be a powerful analytical tool for this purpose.

Place, publisher, year, edition, pages
Uppsala: Universitetsbiblioteket, 2008. 58 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 560
electrospray ionisation, mass spectrometry, liquid chromatography, organic phosphorus, aquatic sediment, eutrophication, sample preparation, extraction
National Category
Analytical Chemistry
urn:nbn:se:uu:diva-9319 (URN)978-91-554-7306-8 (ISBN)
Public defence
2008-11-07, B42, BMC, Husargatan 3, Uppsala, Sweden, 10:15
Available from: 2008-10-15 Created: 2008-10-15 Last updated: 2010-08-16Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Physical and Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 191 hits
ReferencesLink to record
Permanent link

Direct link