Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pharmacodynamic modeling of cardiac biomarkers in breast cancer patients treated with anthracycline and trastuzumab regimens.
Show others and affiliations
2018 (English)In: Journal of Pharmacokinetics and Pharmacodynamics, ISSN 1567-567X, E-ISSN 1573-8744, Vol. 45, no 3, p. 431-442Article in journal (Refereed) Published
Abstract [en]

Trastuzumab is associated with cardiotoxicity, manifesting as a decrease of the left-ventricular ejection fraction (LVEF). Administration of anthracyclines prior to trastuzumab increases risk of cardiotoxicity. High-sensitive troponin T and N-terminal-pro-brain natriuretic peptide (NT-proBNP) are molecular markers that may allow earlier detection of drug-induced cardiotoxicity. In this analysis we aimed to quantify the kinetics and exposure-response relationships of LVEF, troponin T and NT-proBNP measurements, in patients receiving anthracycline and trastuzumab. Repeated measurements of LVEF, troponin T and NT-proBNP and dosing records of anthracyclines and trastuzumab were available from a previously published clinical trial. This trial included 206 evaluable patients with early breast cancer. Exposure to anthracycline and trastuzumab was simulated based on available dosing records and by using a kinetic-pharmacodynamic (K-PD) and a fixed pharmacokinetic (PK) model from literature, respectively. The change from baseline troponin T was described with a direct effect model, affected by simulated anthracycline concentrations, representing myocyte damage. The relationship between trastuzumab and LVEF was described by an indirect effect compartment model. The EC50 for LVEF decline was significantly affected by the maximum troponin T concentration after anthracycline treatment, explaining 15.1% of inter-individual variability. In this cohort, NT-proBNP changes could not be demonstrated to be related to anthracycline or trastuzumab treatment. Pharmacodynamic models for troponin T and LVEF were successfully developed, identifying maximum troponin T concentration after anthracycline treatment as a significant determinant for trastuzumab-induced LVEF decline. These models can help identify patients at risk of drug-induced cardiotoxicity and optimize cardiac monitoring strategies.

Place, publisher, year, edition, pages
2018. Vol. 45, no 3, p. 431-442
Keywords [en]
Anthracyclines, Breast cancer, Cardiac biomarkers, Pharmacodynamics, Pharmacometrics, Trastuzumab
National Category
Pharmaceutical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-494359DOI: 10.1007/s10928-018-9579-8PubMedID: 29429038OAI: oai:DiVA.org:uu-494359DiVA, id: diva2:1727941
Available from: 2023-01-17 Created: 2023-01-17 Last updated: 2023-01-17

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Dorlo, Thomas P C
In the same journal
Journal of Pharmacokinetics and Pharmacodynamics
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 20 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf