uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Boundary-layer structure in flow over a heterogeneous surface
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Earth Sciences, Department of Earth Sciences.
1999 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Airborne measurements performed within the framework of NOPEX (Northern Hemisphere Land Surface Climate Processes Experiment) have been used to study processes related to fluxes of momentum, heat, and moisture in the boundary layer in the Swedish boreal region. The NOPEX area is characterized as heterogeneous with respect to vegetation. Here forests, farmlands, and lakes are interspersed over a large range of area scales. The atmospheric boundary layer constitutes a complex system where physical processes on different scales interact. These processes, which depend on conditions both at the surface and within the boundary layer, are important for the transport of energy and have previosly not been fully understood.

The flight missions and the airborne measuring techniques in NOPEX are described. The calibrated data are shown to be accurate within acceptable limits. The footprint concept has been used to reconstruct the heat fluxes at aircraft level from surface observations. A comparison with aircraft measured fluxes shows that the sum of sensible and latent heat fluxes agree, while sensible and latent heat fluxes, respectively, disagree. The reason for the disagreement may be that tower measurements in one type of vegetation are not representative for all similar surfaces for the case studied.

Atmospheric turbulence is not a chaotic process, but contains organized, or coherent, structures. It is shown that turbulence in the boundary layer is organized in structures whose geometry is a function of normalized height and stability. These structures are found to be responsible for 70-100% of the vertical energy transport, even though they are present only during two thirds of the time of observation.

The mesoscale flow modification in the boundary layer due to the presence of a lake (34 km2) has been studied with numerical simulations and airborne measurements. In this case, it appears as differences in surface roughness are more important than differences in surface temperature for the flow modification.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis , 1999. , 40 p.
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 431
Keyword [en]
Earth sciences
Keyword [sv]
National Category
Earth and Related Environmental Sciences
Research subject
URN: urn:nbn:se:uu:diva-949ISBN: 91-554-4397-4OAI: oai:DiVA.org:uu-949DiVA: diva2:173022
Public defence
1999-03-26, SGU´s room, Villavägen 18, Uppsala University, Uppsala, 10:00
Available from: 1999-03-05 Created: 1999-03-05Bibliographically approved

Open Access in DiVA

No full text
Buy this publication >>

By organisation
Department of Earth Sciences
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 244 hits
ReferencesLink to record
Permanent link

Direct link