uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Dynamics of complex magnetic systems
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Technology, Department of Materials Science.
1999 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Dynamic magnetic properties of disordered and frustrated magnetic systems have beenexperimentally investigated utilising SQUID (Superconducting Quantum Interference Device)magnetometry. The studied systems are spin glasses, reentrant ferromagnets, reentrantantiferromagnets and diluted Ising antiferromagnets.

Dynamics of spin glasses has been investigated in ac-susceptibility, zero-field-cooled andfield-cooled relaxation experiments. A real space droplet model is used to decipher the observed behaviour, including an intriguing memory effect.

It is found that the intrinsic dynamic behaviour of reentrant ferromagnets is accessible byprobing with low enough magnetic fields. The ferromagnetic phase shows a chaotic response totemperature and magnetic field perturbations. An overlap length scale is established, similar to what is found in ordinary spin glasses. The dynamics of the ferromagnetic phase also shows distinct dissimilarities with the low temperature reentrant spin glass phase which displays archetypal spin glass dynamics. Dynamic scaling suggests that a finite phase transition temperature, TRSG, exists in the standard reentrant ferromagnet (Fe0.20Ni0.80)75P16B6Al3.

The reentrant Ising antiferromagnet Fe0.35Mn0.65TiO3, shows a weak ageing behaviour but no indications of criticality are found at low temperatures. Instead the slowing down of the relaxation times obey a pure Arrhenius law. A dynamic H-T phase diagram is determined from acsusceptibility measurements in different applied dc-fields.

The diluted Ising antiferromagnetic system FexZn1-xF2 of composition at and slightly above the percolation threshold is examined. The percolating sample shows a slowing down of the relaxation times according to a pure Arrhenius law at low temperatures. No indications of a finite temperature spin glass phase transition are observed. Frustration is present in the sample as indicated by a weak ageing behaviour. The sample of higher concentration also shows a slowing down of the dynamics according to a pure Arrhenius law in zero dc-field at low temperatures. In an applied dc-field of relevant magnitude the system displays typical and well established random field effects.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis , 1999. , 57 p.
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1104-232X ; 447
Keyword [en]
Materials science
Keyword [sv]
National Category
Materials Engineering
Research subject
Solid State Physics
URN: urn:nbn:se:uu:diva-968ISBN: 91-554-4447-4OAI: oai:DiVA.org:uu-968DiVA: diva2:173305
Public defence
1999-05-21, Lecture room 2005 at the Ångström Laboratory, Uppsala University, Uppsala, 09:30
Available from: 1999-04-30 Created: 1999-04-30Bibliographically approved

Open Access in DiVA

No full text
Buy this publication >>

By organisation
Department of Materials Science
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 136 hits
ReferencesLink to record
Permanent link

Direct link