Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Graph Neural Networks for low-energy event classification & reconstruction in IceCube
Loyola Univ Chicago, Dept Phys, Chicago, IL 60660 USA.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden.ORCID iD: 0000-0002-7448-4189
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden.ORCID iD: 0000-0001-8588-7306
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics. Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden.ORCID iD: 0000-0001-5998-2553
Show others and affiliations
Number of Authors: 3812022 (English)In: Journal of Instrumentation, E-ISSN 1748-0221, Vol. 17, no 11, article id P11003Article in journal (Refereed) Published
Abstract [en]

IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV-100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%-20% compared to current maximum likelihood techniques in the energy range of 1 GeV-30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.

Place, publisher, year, edition, pages
IOP Publishing Ltd Institute of Physics (IOP), 2022. Vol. 17, no 11, article id P11003
Keywords [en]
Analysis and statistical methods, Data analysis, Neutrino detectors, Particle identification methods
National Category
Subatomic Physics Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:uu:diva-496710DOI: 10.1088/1748-0221/17/11/P11003ISI: 000898643400010OAI: oai:DiVA.org:uu-496710DiVA, id: diva2:1744983
Funder
Swedish Research CouncilSwedish National Infrastructure for Computing (SNIC)Knut and Alice Wallenberg Foundation
Note

For complete list of authors see http://dx.doi.org/10.1088/1748-0221/17/11/P11003

Available from: 2023-03-21 Created: 2023-03-21 Last updated: 2024-12-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Beise, JakobBotner, OlgaGlaser, ChristianHallgren, AllanPérez de los Heros, CarlosValtonen-Mattila, Nora

Search in DiVA

By author/editor
Beise, JakobBotner, OlgaGlaser, ChristianHallgren, AllanPérez de los Heros, CarlosValtonen-Mattila, Nora
By organisation
High Energy Physics
In the same journal
Journal of Instrumentation
Subatomic PhysicsAstronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 86 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf