Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wave Height Prediction Suitable for Maritime Transportation Based on Green Ocean of Things
2023 (English)In: IEEE Transactions on Artificial Intelligence, ISSN 2691-4581, Vol. 4, no 2, p. 328-337Article in journal (Refereed) Published
Abstract [en]

Nowadays, the application fields of the Internet of Things (IoT) involve all aspects. This article combines ocean research with the IoT, in order to investigate the wave height prediction to assist ships to improve the economy and safety of maritime transportation and proposes an ocean IoT Green Ocean of Things (GOoT) with a green and low-carbon concept. In the wave height prediction, we apply a hybrid model (EMD-TCN) combining the temporal convolutional network (TCN) and the empirical mode decomposition (EMD) to the buoy observation data. We then compare it with TCN, long short-term memory (LSTM), and hybrid model EMD-LSTM. By testing the data of eight selected NDBC buoys distributed in different sea areas, the effectiveness of the EMD-TCN hybrid model in wave height prediction is verified. The hysteresis problem in previous wave height prediction research is eliminated, while improving the accuracy of the wave height prediction. In the 24 h, 36 h, and 48 h wave height prediction, the minimum mean absolute errors are 0.1265, 0.1689, and 0.1963, respectively; the maximum coefficient of determination are 0.9388, 0.9019, and 0.8712, respectively. In addition, in the short-term prediction, the EMD-TCN hybrid model also performs well, and has strong versatility. © 2020 IEEE.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2023. Vol. 4, no 2, p. 328-337
Keywords [en]
Empirical mode decomposition (EMD), Internet of Things (IoT), maritime transportation, temporal convolutional network (TCN), wave height prediction, Convolution, Forecasting, Internet of things, Long short-term memory, Oceanography, Time series analysis, Water waves, Convolutional networks, Empirical Mode Decomposition, Internet of thing, Marine vehicles, Ocean, Predictive models, Temporal convolutional network, Time-series analysis
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:uu:diva-500245DOI: 10.1109/TAI.2022.3168246Scopus ID: 2-s2.0-85151589461OAI: oai:DiVA.org:uu-500245DiVA, id: diva2:1750612
Note

Export Date: 13 April 2023; Article; 通讯地址: Lv, Z.; Uppsala University, Sweden; 电子邮件: lvzhihan@gmail.com; 基金资助详情: National Natural Science Foundation of China, NSFC, 61902203; 基金资助文本 1: This work was supported by the National Natural Science Foundation of China under Grant 61902203.; 参考文献: Ashton, K., That 'Internet of Things' thing (2009) RFID J., 22 (7), pp. 97-114; Atzori, L., Iera, A., Morabito, G., The Internet of Things: A survey (2010) Comput. Netw., 54 (15), pp. 2787-2805; Qiu, J., Du, L., Zhang, D., Su, S., Tian, Z., Nei-TTE: Intelligent traffic time estimation based on fine-grained time derivation of road segments for smart city (2020) IEEE Trans. Ind. Informat., 16 (4), pp. 2659-2666. , Apr; Qiu, J., Tian, Z., Du, C., Zuo, Q., Su, S., Fang, B., A survey on access control in the age of Internet of Things (2020) IEEE Internet Things J., 7 (6), pp. 4682-4696. , Jun; Shafiq, M., Tian, Z., Bashir, A.K., Du, X., Guizani, M., CorrAUC: A malicious bot-IoT traffic detection method in IoT network using machinelearning techniques (2021) IEEE Internet Things J., 8 (5), pp. 3242-3254. , Mar; Qiu, J., Chai, Y., Tian, Z., Du, X., Guizani, M., Automatic concept extraction based on semantic graphs from big data in smart city (2020) IEEE Trans. Comput. Social Syst., 7 (1), pp. 225-233. , Feb; Sun, Y., Tian, Z., Li, M., Su, S., Du, X., Guizani, M., Honeypot identification in softwarized industrial cyber-physical systems (2021) IEEE Trans. Ind. Informat., 17 (8), pp. 5542-5551. , Aug; Lu, H., CONet: A cognitive ocean network (2019) IEEE Wireless Commun., 26 (3), pp. 90-96. , Jun; Liu, R.W., Nie, J., Garg, S., Xiong, Z., Zhang, Y., Hossain, M.S., Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems (2021) IEEE Internet Things J., 8 (7), pp. 5374-5385. , Apr; Liu, R.W., Liang, M., Nie, J., Lim, W.Y.B., Zhang, Y., Guizani, M., Deep learning-powered vessel trajectory prediction for improving smart traffic services in maritime Internet of Things (2022) IEEE Trans. Netw. Sci. Eng.; Jahanbakht, M., Xiang, W., Hanzo, L., Azghadi, M.R., Internet of underwater things and big marine data analytics-A comprehensive survey (2021) IEEE Commun. Surv. Tut., 23 (2), pp. 904-956. , Apr.-Jun; Zeng, X., Chen, M., A novel Big Data collection system for ship energy efficiency monitoring and analysis based on Beidou system (2021) J. Adv. Transp., 2021; Álvarez, P.S., From maritime salvage to IMO 2020 strategy: Two actions to protect the environment (2021) Mar. Pollut. Bull., 170; Nicolau, V., Aiordachioaie, D., Popa, R., Neural network prediction of the wave influence on the yaw motion of a ship (2004) Proc. IEEE Int. Joint Conf. Neural Netw. (IEEE Cat. No. 04CH37541), 4, pp. 2801-2806; Fossen, T.I., Perez, T., Kalman filtering for positioning and heading control of ships and offshore rigs (2009) IEEE Control Syst. Mag., 29 (6), pp. 32-46. , Dec; Wang, Y., Chai, S., Khan, F., Nguyen, H.D., Unscented Kalman filter trained neural networks based rudder roll stabilization system for ship in waves (2017) Appl. Ocean Res., 68, pp. 26-38; Booij, N., Ris, R.C., Holthuijsen, L.H., Athird-generationwavemodel for coastal regions: 1. Model description and validation (1999) J. Geophysical Res., Oceans, 104 (C4), pp. 7649-7666; Tolman, H.L., Chalikov, D., Source terms in a third-generation wind wave model (1996) J. Phys. Oceanogr., 26 (11), pp. 2497-2518; Savitha, R., Al Mamun, A., Regional ocean wave height prediction using sequential learning neural networks (2017) Ocean Eng., 129, pp. 605-612; Ni, C., Ma, X., An integrated long-short term memory algorithm for predicting polar westerlies wave height (2020) Ocean Eng., 215; Deo, M., Naidu, C.S., Real time wave forecasting using neural networks (1998) Ocean Eng., 26 (3), pp. 191-203; Malekmohamadi, I., Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction (2011) Ocean Eng., 38 (2-3), pp. 487-497; Fan, S., Xiao, N., Dong, S., A novel model to predict significant wave height based on long short-term memory network (2020) Ocean Eng., 205; Hu, H., Van Der Westhuysen, A.J., Chu, P., Fujisaki-Manome, A., Predicting Lake Erie wave heights using XGBoost and LSTM (2021) Ocean Model., 164; Lou, R., Wang, W., Li, X., Zheng, Y., Lv, Z., Prediction of ocean wave height suitable for ship autopilot (2021) IEEE Trans. Intell. Transp. Syst.; Duan, W., Han, Y., Huang, L., Zhao, B., Wang, M., A hybrid EMD-SVR model for the short-term prediction of significant wave height (2016) Ocean Eng., 124, pp. 54-73; Duan, W.Y., Huang, L.M., Han, Y., Huang, D.T., A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting (2016) J. Zhejiang Univ. Sci. A, 17 (2), pp. 115-129; Zhou, S., Bethel, B.J., Sun, W., Zhao, Y., Xie, W., Dong, C., Improving significant wave height forecasts using a joint empirical mode decomposition-long short-term memory network (2021) J. Mar. Sci. Eng., 9 (7), p. 744; Zhang, J., Wang, M.M., Xia, T., Wang, L., Maritime IoT: An architectural and radio spectrum perspective (2020) IEEE Access, 8, pp. 93109-93122; Wang, M.M., Zhang, J., You, X., Machine-type communication for maritime internet of things: A design (2020) IEEE Commun. Surv. Tut., 22 (4), pp. 2550-2585. , Oct.-Dec; Huang, N.E., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis (1998) Proc. Roy. Soc. London. Ser.AMath., Phys. Eng. Sci., 454 (1971), pp. 903-995; Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y., Temporal convolutional networks for the advance prediction of ENSO (2020) Sci. Rep., 10 (1), pp. 1-15; Meka, R., Alaeddini, A., Bhaganagar, K., A robust deep learning framework for short-term wind power forecast of a full-scale wind farm using atmospheric variables (2021) Energy, 221; Bai, S., Kolter, J.Z., Koltun, V., (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling; Yu, F., Koltun, V., (2015) Multi-scale context aggregation by dilated convolutions; Phibbs, S., Toumi, R., Modeled dependence of wind and waves on ocean temperature in tropical cyclones (2014) Geophysical Res. Lett., 41 (20), pp. 7383-7390; Hashim, R., Roy, C., Motamedi, S., Shamshirband, S., Petković, D., Selection of climatic parameters affectingwave height prediction using an enhanced Takagi-Sugeno-based fuzzy methodology (2016) Renewable Sustain. Energy Rev., 60, pp. 246-257; Dixit, P., Londhe, S., Dandawate, Y., Removing prediction lag in wave height forecasting using Neuro-wavelet modeling technique (2015) Ocean Eng., 93, pp. 74-83; Zhang, X., Dai, H., Significantwave height predictionwith the CRBMDBNmodel (2019) J. AtmosphericOcean. Technol., 36 (3), pp. 333-351

Available from: 2023-04-13 Created: 2023-04-13 Last updated: 2023-04-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lv, Z.
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf