Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Charge density in NiCl2.4H2O at 295 and 30 K
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Materials Chemistry, Inorganic Chemistry.
1999 (English)In: Acta Crystallographica Section B: Structural Science, ISSN 0108-7681, E-ISSN 1600-5740, Vol. 55, no 6, p. 830-840Article in journal (Refereed) Published
Abstract [en]

The charge distribution has been determined by multipole refinements against single-crystal X-ray diffraction data. In the refinements a comparison was made between the densities based on H-atom parameters from X-ray and neutron data, respectively. X-ray study:  (Mo K ) = 0.71073 Å, F(000) = 408; at 30 K: R(F) = 0.015 for 6686 reflections; at 295 K: R(F) = 0.022 for 4630 reflections. The nickel ion is octahedrally surrounded by four water molecules and two chloride ions, forming a locally neutral Ni(H2O)4Cl2 complex. Two of the water molecules are coordinated to nickel approximately in one of the tetrahedral (`lone-pair') directions; the other two are trigonally coordinated. At 30 K one H atom in one of the trigonally coordinated water molecules is disordered, with equal occupation of two different positions. Owing to the polarizing influence of the nickel ion there are two peaks in the lone-pair plane of the water molecules when these are tetrahedrally coordinated; for those trigonally coordinated there is just one peak. The individual (`partial') charge densities, calculated from the deformation functions of only nickel or the separate water molecules, have also been calculated to study the effects of superposition of the individual densities. In the individual density of nickel an excess is observed in the diagonal directions and a deficiency in the ligand directions. However, owing to the influence of the whole crystalline environment, the maxima around nickel are not found in the planes defined by nickel and the six ligands.

Place, publisher, year, edition, pages
1999. Vol. 55, no 6, p. 830-840
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-501189DOI: 10.1107/s0108768199005741OAI: oai:DiVA.org:uu-501189DiVA, id: diva2:1754362
Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2023-05-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Olovsson, Ivar

Search in DiVA

By author/editor
Olovsson, Ivar
By organisation
Inorganic Chemistry
In the same journal
Acta Crystallographica Section B: Structural Science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf