Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Contact inactivation of human adenovirus type 5 by silicon nitride ceramics
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering, Applied Material Science.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Materials Science and Engineering.ORCID iD: 0000-0001-6663-6536
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.ORCID iD: 0000-0003-2961-5060
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Containing the spread of pathogens and treating the diseases they cause have become topics of high importance and urgency for researchers. Recent epidemics and pandemics, key amongst them being the pandemic caused by the coronavirus disease (COVID-19), have highlighted the devastating results virus infections can have on our society. Uncovering and utilising materials for the protection from and treatment of virus-induced diseases can considerably alleviate the load imposed on healthcare systems worldwide. Silicon nitride is a biocompatible ceramic material used in orthopedic implants that is effective in the inactivation of single-stranded RNA viruses. However, the effect of the material on the more resilient DNA viruses remains unknown. This study aimed to investigate the antiviral behaviour of the material, in powder and bulk form, against DNA viruses, and more specifically the human adenovirus. The results of the study indicated that silicon nitride dramatically reduces adenoviral infectivity in powder (>98% reduction in infective virus compared to untreated samples) and bulk form (>73% reduction in infective virus compared to negative control). In both cases, inactivation was achieved rapidly, in one minute for powders and 10 minutes for bulk surfaces. The findings of this study strengthen the potential of silicon nitride to be used as an antiviral agent, aiding the fight against the spread of both DNA and RNA virus diseases.

Keywords [en]
Silicon nitride, viral inactivation, surfaces, adenovirus
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:uu:diva-506361OAI: oai:DiVA.org:uu-506361DiVA, id: diva2:1775391
Available from: 2023-06-27 Created: 2023-06-27 Last updated: 2023-06-27Bibliographically approved
In thesis
1. Silicon nitride-based materials for spinal and antipathogenic applications
Open this publication in new window or tab >>Silicon nitride-based materials for spinal and antipathogenic applications
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon nitride (Si3N4) is a ceramic material that is well-established in industrial applications due to its stability in demanding environments. The mechanical properties and biocompatibility of the material have led to its approval for clinical use in spinal implants. The unique surface chemistry of Si3N4 has been shown to create a chemical environment that is supportive to bone regeneration while simultaneously reducing bacterial viability, both in vitro and in animal models in vivo. Thus, Si3N4 can be used in the spine to reduce patient recovery times while protecting the implant site from damaging and costly infections. However, results from clinical studies have not shown significant differences between silicon nitride and other spinal implant materials in terms of patient outcomes.   

Thus, the first aim of this thesis was to find ways to optimise the biological properties of the material and in turn create spinal implants that would exhibit significantly higher osteointegration while reducing the incidence of infections. To this end, a thermochemical surface modification was developed that changed the surface chemistry and roughness of the material resulting in increased in vitro bioactivity without affecting its antibacterial behaviour. Furthermore, the possibility of creating an osteoconductive, antibacterial bone cement to be used in vertebroplasties in the spine was explored. By adding up to 20%wt of a Si3N4 powder to poly methyl methacrylate (PMMA) cements, a significant (>90%) reduction of bacterial biofilm formation was achieved without affecting the compressive strength or biocompatibility of the modified bone cements in a negative way.

A secondary objective of the study was to explore the antipathogenic properties of the material, fulfilling the growing need for a world where the spread of dangerous pathogens will be limited. The efficiency of the material against one of the most resilient DNA-viruses, the human adenovirus, was tested. It was found that contact with Si3N4 in both powder and bulk form rapidly reduced infectivity (>98% and >73%, respectively). Based on these results, a thermal modification of silicon nitride powders was developed, that would enhance their antiviral efficiency against SARS-CoV-2 and thus the applicability of the material. It was found that 10%wt modified-Si3N4 slurries rendered the coronavirus non-infectious after less than a minute of contact. The results of these studies proved that silicon nitride can also be used as an antipathogenic agent in environmental applications.

Overall, in this thesis, steps were taken towards the development of Si3N4-based materials that can lead to faster healing, lower infection rates and that can be used to limit the spread of disease.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2023. p. 44
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2284
National Category
Materials Engineering
Identifiers
urn:nbn:se:uu:diva-506364 (URN)978-91-513-1846-2 (ISBN)
Public defence
2023-09-15, Siegbahnshalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2023-08-25 Created: 2023-06-27 Last updated: 2023-08-25

Open Access in DiVA

No full text in DiVA

Authority records

Katsaros, IoannisCarlsson, AnettePersson, CeciliaAkusjärvi, GöranXia, WeiEngqvist, Håkan

Search in DiVA

By author/editor
Katsaros, IoannisCarlsson, AnettePersson, CeciliaAkusjärvi, GöranXia, WeiEngqvist, Håkan
By organisation
Applied Material ScienceDepartment of Medical Biochemistry and MicrobiologyDepartment of Materials Science and Engineering
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 102 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf