uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Show others and affiliations
2008 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 105, no 12, 4751-4756 p.Article in journal (Refereed) Published
Abstract [en]

Heparan sulfate (HS) proteoglycans influence embryonic development and adult physiology through interactions with protein ligands. The interactions depend on HS structure, which is determined largely during biosynthesis by Golgi enzymes. How biosynthesis is regulated is more or less unknown. During polymerization of the HS chain, carried out by a complex of the exostosin proteins EXT1 and EXT2, the first modification enzyme, glucosaminyl N-deacetylase/N-sulfotransferase (NDST), introduces N-sulfate groups into the growing polymer. Unexpectedly, we found that the level of expression of EXT1 and EXT2 affected the amount of NDST1 present in the cell, which, in turn, greatly influenced HS structure. Whereas overexpression of EXT2 in HEK 293 cells enhanced NDST1 expression, increased NDST1 N-glycosylation, and resulted in elevated HS sulfation, overexpression of EXT1 had opposite effects. Accordingly, heart tissue from transgenic mice overexpressing EXT2 showed increased NDST activity. Immunoprecipitaion experiments suggested an interaction between EXT2 and NDST1. We speculate that NDST1 competes with EXT1 for binding to EXT2. Increased NDST activity in fibroblasts with a gene trap mutation in EXT1 supports this notion. These results support a model in which the enzymes of HS biosynthesis form a complex, or a GAGosome.

Place, publisher, year, edition, pages
2008. Vol. 105, no 12, 4751-4756 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-98897DOI: 10.1073/pnas.0705807105ISI: 000254772700040PubMedID: 18337501OAI: oai:DiVA.org:uu-98897DiVA: diva2:201498
Available from: 2009-03-04 Created: 2009-03-04 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Kjellén, Lena

Search in DiVA

By author/editor
Kjellén, Lena
By organisation
Department of Medical Biochemistry and Microbiology
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 706 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf