uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automated Assessment of Whole-Body Adipose Tissue Depots From Continuously Moving Bed MRI: A Feasibility Study
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Radiology.
(MR Clinical Science, Philips Healthcare, Oslo, Norway.)
Show others and affiliations
2009 (English)In: Journal of Magnetic Resonance Imaging, ISSN 1053-1807, E-ISSN 1522-2586, Vol. 30, no 1, 185-193 p.Article in journal (Refereed) Published
Abstract [en]

PURPOSE: To present an automated algorithm for segmentation of visceral, subcutaneous, and total volumes of adipose tissue depots (VAT, SAT, TAT) from whole-body MRI data sets and to investigate the VAT segmentation accuracy and the reproducibility of all depot assessments. MATERIALS AND METHODS: Repeated measurements were performed on 24 volunteer subjects using a 1.5 Tesla clinical MRI scanner and a three-dimensional (3D) multi-gradient-echo sequence (resolution: 2.1 x 2.1 x 8 mm(3), acquisition time: 5 min 15 s). Fat and water images were reconstructed, and fully automated segmentation was performed. Manual segmentation of the VAT reference was performed by an experienced operator. RESULTS: Strong correlation (R = 0.999) was found between the automated and manual VAT assessments. The automated results underestimated VAT with 4.7 +/- 4.4%. The accuracy was 88 +/- 4.5% and 7.6 +/- 5.7% for true positive and false positive fractions, respectively. Coefficients of variation from the repeated measurements were: 2.32 % +/- 2.61%, 2.25% +/- 2.10%, and 1.01% +/- 0.74% for VAT, SAT, and TAT, respectively. CONCLUSION: Automated and manual VAT results correlated strongly. The assessments of all depots were highly reproducible. The acquisition and postprocessing techniques presented are likely useful in obesity related studies.

Place, publisher, year, edition, pages
2009. Vol. 30, no 1, 185-193 p.
Keyword [en]
magnetic resonance imaging, whole-body, water-fat imaging, visceral adipose tissue, subcutaneous adipose tissue, automated segmentation
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-102354DOI: 10.1002/jmri.21820ISI: 000267452600023PubMedID: 19557740OAI: oai:DiVA.org:uu-102354DiVA: diva2:214781
Available from: 2009-05-06 Created: 2009-05-06 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Kullberg, JoelJohansson, LarsAhlström, Håkan

Search in DiVA

By author/editor
Kullberg, JoelJohansson, LarsAhlström, Håkan
By organisation
Radiology
In the same journal
Journal of Magnetic Resonance Imaging
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 486 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf