uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The impact of neurotrophin-3 on the dorsal root transitional zone following injury
Show others and affiliations
2008 (English)In: Spinal Cord, ISSN 1362-4393, E-ISSN 1476-5624, Vol. 46, no 12, 804-810 p.Article in journal (Refereed) Published
Abstract [en]

Study design: Morphological and Stereological assessment of the dorsal root transitional zone (DRTZ) following complete crush injury, using light microscopy (LM) and transmission electron microscopy (TEM).Objectives: To assess the effect of exogenous neurotrophin-3 (NT-3) on the response of glial cells and axons to dorsal root damage.Setting: Department of Anatomy, University College Cork, Ireland and Department of Physiology, UMDS, University of London, UK.Methods: Cervical roots (C6-8) from rats which had undergone dorsal root crush axotomy 1 week earlier, in the presence (n = 3) and absence (n = 3) of NT-3, were processed for LM and TEM.Results: Unmyelinated axon number and size was greater in the DRTZ proximal ( Central Nervous System; CNS) and distal ( Peripheral Nervous System; PNS) compartments of NT-3-treated tissue. NT-3 was associated with a reduced astrocytic response, an increase in the proportion of oligodendrocytic tissue and a possible inhibition or delay of microglial activation. Disrupted-myelin volume in the DRTZ PNS and CNS compartments of treated tissue was lower, than in control tissue. In the PNS compartment, NT-3 treatment increased phagocyte and blood vessel numbers. It decreased myelinating activity, as sheath thickness was significantly lower and may also account for the noted lower Schwann cell and organelle volume in the test group.Conclusions: Our observations suggest that NT-3 interacts with non-neuronal tissue to facilitate the regenerative effort of damaged axons. This may be as a consequence of a direct action or indirectly mediated by modulation of non-neuronal responses to injury.

Place, publisher, year, edition, pages
2008. Vol. 46, no 12, 804-810 p.
Keyword [en]
glia, axon, regeneration, NT-3, DRTZ, stereology
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-126726DOI: 10.1038ISI: 000261406400007OAI: oai:DiVA.org:uu-126726DiVA: diva2:217287
Available from: 2009-05-13 Created: 2008-09-13 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Neuroanatomy
In the same journal
Spinal Cord
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 480 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf