uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Embryonic cardiac arrhythmia and generation of reactive oxygen species: common teratogenic mechanism for IKr blocking drugs
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
2007 (English)In: Reproductive Toxicology, ISSN 0890-6238, E-ISSN 1873-1708, Vol. 24, no 1, 42-56 p.Article in journal (Refereed) Published
Abstract [en]

In the adult organism, it is well established that hypoxia followed by reperfusion may be fatal and result in generation of reactive oxygen species (ROS) and subsequent tissue damage. There is also considerable evidence that temporary decrease or interruption in oxygen supply to the embryo and ROS generation during reperfusion result in tissue damage in embryonic tissues. A wide spectrum of different malformations by transient embryonic hypoxia could be produced, depending on the duration, extent, and timing of the hypoxic event. It is the contention of this paper that drugs that block the potassium channel IKr, either as an intended pharmacologic effect or as an unwanted side-effect, are potentially teratogenic by a common ROS related mechanism. Drugs blocking the IKr channel, such as almokalant, dofetilide, phenytoin, cisapride and astemizole, do all produce a similar pattern of hypoxia-related malformations. Mechanistic studies show that the malformations are preceded by embryonic cardiac arrhythmia and periods of hypoxia/reoxygenation in embryonic tissues. Pretreatment or simultaneous treatment with radical scavengers with capacity to capture ROS, markedly decrease the teratogenicity of different IKr blocking drugs. A second aim of this review is to demonstrate that the conventional design of teratology studies is not optimal to detect malformations caused by IKr blocking drugs. Repeated high doses result in high incidences of embryonic death due embryonic cardiac arrhythmia, thus masking their teratogenic potential. Instead, single dosing on specific days is proposed to be a better way to characterize the teratogenic potential of Ikr blocking drugs.

Place, publisher, year, edition, pages
2007. Vol. 24, no 1, 42-56 p.
Keyword [en]
Reactive oxygen species, Embryonic arrhythmia, IKr blocking drugs, Hypoxia, Malformation, hERG
National Category
Pharmaceutical Sciences
URN: urn:nbn:se:uu:diva-104298DOI: 10.1016/j.reprotox.2007.04.005ISI: 000248775200006PubMedID: 17570632OAI: oai:DiVA.org:uu-104298DiVA: diva2:219621
Available from: 2009-05-28 Created: 2009-05-28 Last updated: 2011-04-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Reproductive Toxicology
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 152 hits
ReferencesLink to record
Permanent link

Direct link