uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of radiation on growth of two human tumour cell lines surviving a previous high dose, low dose-rate, radionuclide exposure
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
2008 (English)In: International Journal of Oncology, ISSN 1019-6439, Vol. 33, no 2, 341-9 p.Article in journal (Refereed) Published
Abstract [en]

Effects of radiation on growth of two human tumour cell lines that survived a previous high dose, low dose-rate radionuclide exposure simulating intensive radionuclide therapy, were analyzed. The purpose was to investigate whether the survivors gained therapy induced changes in growth and radiation response. The U118MG, ParRes (parental resistant), and U373MG, ParSen (parental sensitive), glioma cells were used because they are known to be low dose-rate radiation resistant and sensitive, respectively. These cells were initially exposed to high dose, low dose-rate radiation for 24 h and surviving U118MG and U373MG cells formed new cultures called SurRes (surviving resistant) and SurSen (surviving sensitive), respectively. All four cell types were then exposed to graded acute radiation doses, 0-8 Gy, and analyzed for radiation induced growth disturbances. They were also analyzed regarding DNA-content and cell cycle distributions. The SurRes cells regained in most cases the same growth rate, had the same growth delays and showed generally a similar response as the original ParRes cells to the 0-8 Gy exposures. In contrast, the SurSen cells had in all cases slower growth rate and longer growth delays than the original ParSen cells after the 0-8 Gy exposures. There were no signs of radiation-induced radioresistance. The slow growing SurSen cells contained about 80% more DNA and had more cells in G1 and fewer in G2 than the ParSen cells. The conclusion is that tumour cells surviving high dose, low dose-rate, radionuclide therapy, afterwards can react differently to a new radiation exposure.

Place, publisher, year, edition, pages
2008. Vol. 33, no 2, 341-9 p.
Keyword [en]
cancer, cultured cells, glioma, growth, low dose-rate, radionuclides, radiotherapy
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-104375DOI: 10.3892/ijo_00000014ISI: 000258481400014PubMedID: 18636155OAI: oai:DiVA.org:uu-104375DiVA: diva2:219757
Available from: 2009-05-28 Created: 2009-05-28 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Biomedical Radiation Sciences
In the same journal
International Journal of Oncology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 448 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf