uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative in vivo evaluation of technetium and iodine labels on an anti-HER2 affibody for single-photon imaging of HER2 expression in tumors
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.ORCID iD: 0000-0001-6120-2683
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
KTH Sthlm.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Section of Medical Physics.
Show others and affiliations
2006 (English)In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 47, no 3, 512-519 p.Article in journal (Refereed) Published
Abstract [en]

In vivo diagnosis with cancer-specific targeting agents that have optimal characteristics for imaging is an important development in treatment planning for cancer patients. Overexpression of the HER2 antigen is high in several types of carcinomas and has predictive and prognostic value, especially for breast cancer. A new type of targeting agent, the Affibody molecule, was described recently. An Affibody dimer, His6-(ZHER2:4)2 (15.4 kDa), binds to HER2 with an affinity of 3 nmol/L and might be used for the imaging of HER2 expression. The use of 99mTc might improve the availability of the labeled conjugate, and Tc(I)-carbonyl chemistry enables the site-specific labeling of the histidine tag on the Affibody molecule. The goals of the present study were to prepare 99mTc-labeled His6-(ZHER2:4)2 and to evaluate its targeting properties compared with the targeting properties of 125I-4-iodobenzoate-His6-(ZHER2:4)2 [125I-His6-(ZHER2:4)2]. METHODS: The labeling of His6-(ZHER2:4)2 with 99mTc was performed with an IsoLink kit. The specificity of 99mTc-His6-(ZHER2:4)2 binding to HER2 was evaluated in vitro with SK-OV-3 ovarian carcinoma cells. The comparative biodistributions of 99mTc-His6-(ZHER2:4)2 and 125I-His6-(ZHER2:4)2 in tumor-bearing BALB/c nu/nu mice were determined. RESULTS: The labeling yield for 99mTc-His6-(ZHER2:4)2 was approximately 60% (50 degrees C), and the radiochemical purity was greater than 97%. The conjugate was stable during storage and under histidine and cysteine challenges and demonstrated receptor-specific binding. The biodistribution study demonstrated tumor-specific uptake levels (percentage injected activity per gram of tissue [%IA/g]) of 2.6 %IA/g for 99mTc-His6-(ZHER2:4)2 and 2.3 %IA/g for 125I-His6-(ZHER2:4)2 at 4 h after injection. Both conjugates provided clear imaging of SK-OV-3 xenografts at 6 h after injection. The tumor-to-nontumor ratios were much more favorable for the radioiodinated Affibody. CONCLUSION: The use of Tc(I)-carbonyl chemistry enabled us to prepare a stable, site-specifically labeled 99mTc-His6-(ZHER2:4)2 conjugate that was able to bind to HER2-expressing cells in vitro and in vivo. The indirectly radioiodinated conjugate provided better tumor-to-liver ratios. The labeling of Affibody molecules with 99mTc should be investigated further.

Place, publisher, year, edition, pages
2006. Vol. 47, no 3, 512-519 p.
Keyword [en]
Cancer, Tumor, Radiation, Therapy
National Category
Medical and Health Sciences Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-104470ISI: 000249695800022PubMedID: 16513621OAI: oai:DiVA.org:uu-104470DiVA: diva2:219873
Available from: 2009-05-28 Created: 2009-05-28 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

PubMed

Authority records BETA

Orlova, AnnaTolmachev, Vladimir

Search in DiVA

By author/editor
Orlova, AnnaTolmachev, Vladimir
By organisation
Biomedical Radiation SciencesSection of Medical Physics
In the same journal
Journal of Nuclear Medicine
Medical and Health SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 694 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf