uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Planning for intracavitary anti-EGFR radionuclide therapy of gliomas: Literature review and data on EGFR expression
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Genetics and Pathology.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences.
Show others and affiliations
2006 (English)In: Journal of Neuro-Oncology, ISSN 0167-594X, Vol. 77, no 1, 33-45 p.Article in journal (Refereed) Published
Abstract [en]

Targeting with radionuclide labelled substances that bind specifically to the epidermal growth factor receptor, EGFR, is considered for intracavitary therapy of EGFR-positive glioblastoma multiforme, GBM. Relevant literature is reviewed and examples of EGFR expression in GBM are given. The therapeutical efforts made so far using intracavitary anti-tenascin radionuclide therapy of GBM have given limited effects, probably due to low radiation doses to the migrating glioma cells in the brain. Low radiation doses might be due to limited penetration of the targeting agents or heterogeneity in the expression of the target structure. In this article we focus on the possibilities to target EGFR on the tumour cells instead of an extracellular matrix component. There seems to be a lack of knowledge on the degree of intratumoral variation of EGFR expression in GBM, although the expression seemed rather homogeneous over large areas in most of the examples (n=16) presented from our laboratory. The observed homogeneity was surprising considering the genomic instability and heterogeneity that generally characterises highly malignant tumours. However, overexpression of EGFR is, at least in primary GBMs, one of the steps in the development of malignancy, and tumour cells that lose or downregulate EGFR will probably be outgrown in an expanding tumour cell population. Thus, loss of EGFR expression might not be the critical factor for successful intracavitary radionuclide therapy. Instead, it is likely that the penetration properties of the targeting agents are critical, and detailed studies on this are urgent.

Place, publisher, year, edition, pages
2006. Vol. 77, no 1, 33-45 p.
Keyword [en]
Antibodies/immunology/therapeutic use, Brachytherapy/*methods, Brain Neoplasms/immunology/metabolism/*radiotherapy, Cell Movement, Glioblastoma/immunology/metabolism/*radiotherapy, Humans, Radioimmunotherapy/*methods, Receptor; Epidermal Growth Factor/immunology/*metabolism, Tissue Distribution
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-104466DOI: 10.1007/s11060-005-7410-zPubMedID: 16200342OAI: oai:DiVA.org:uu-104466DiVA: diva2:219877
Available from: 2009-05-28 Created: 2009-05-28 Last updated: 2014-03-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Tolmachev, Vladimir

Search in DiVA

By author/editor
Tolmachev, Vladimir
By organisation
Biomedical Radiation SciencesDepartment of Genetics and PathologyOncology
In the same journal
Journal of Neuro-Oncology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 692 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf