uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The unique genomic properties of sex-biased genes: insights from avian microarray data
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Evolutionary Biology.
2008 (English)In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 9, 148- p.Article in journal (Refereed) Published
Abstract [en]

Background: In order to develop a framework for the analysis of sex-biased genes, we present a characterization of microarray data comparing male and female gene expression in 18 day chicken embryos for brain, gonad, and heart tissue. Results: From the 15982 significantly expressed coding regions that have been assigned to either the autosomes or the Z chromosome ( 12979 in brain, 13301 in gonad, and 12372 in heart), roughly 18% were significantly sex- biased in any one tissue, though only 4 gene targets were biased in all tissues. The gonad was the most sex- biased tissue, followed by the brain. Sex- biased autosomal genes tended to be expressed at lower levels and in fewer tissues than unbiased gene targets, and autosomal somatic sex- biased genes had more expression noise than similar unbiased genes. Sex-biased genes linked to the Z- chromosome showed reduced expression in females, but not in males, when compared to unbiased Z- linked genes, and sex- biased Z- linked genes were also expressed in fewer tissues than unbiased Z coding regions. Third position GC content, and codon usage bias showed some sex- biased effects, primarily for autosomal genes expressed in the gonad. Finally, there were several over-represented Gene Ontology terms in the sex- biased gene sets. Conclusion: On the whole, this analysis suggests that sex- biased genes have unique genomic and organismal properties that delineate them from genes that are expressed equally in males and females.

Place, publisher, year, edition, pages
2008. Vol. 9, 148- p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-106376DOI: 10.1186/1471-2164-9-148ISI: 000254891900001OAI: oai:DiVA.org:uu-106376DiVA: diva2:224735
Available from: 2009-06-22 Created: 2009-06-22 Last updated: 2016-04-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Webster, Matthew T.Ellegren, Hans

Search in DiVA

By author/editor
Webster, Matthew T.Ellegren, Hans
By organisation
Evolutionary Biology
In the same journal
BMC Genomics
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 717 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf