uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A unique cell division machinery in the Archaea
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Show others and affiliations
2008 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 105, no 48, 18942-18946 p.Article in journal (Refereed) Published
Abstract [en]

In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction. The cdv operon is dramatically down-regulated after UV irradiation, indicating division inhibition in response to DNA damage, reminiscent of eukaryotic checkpoint systems. The cdv genes exhibit a complementary phylogenetic range relative to FtsZ-based archaeal division systems such that, in most archaeal lineages, either one or the other system is present. Two of the Cdv proteins, CdvB and CdvC, display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin.

Place, publisher, year, edition, pages
2008. Vol. 105, no 48, 18942-18946 p.
Keyword [en]
cdv, Crenarchaeota, cytokinesis, ftsZ, Sulfolobus
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-106988DOI: 10.1073/pnas.0809467105ISI: 000261489100060OAI: oai:DiVA.org:uu-106988DiVA: diva2:227533
Available from: 2009-07-15 Created: 2009-07-15 Last updated: 2012-01-11Bibliographically approved
In thesis
1. Unique Solutions to Universal Problems: Studies of the Archaeal Cell
Open this publication in new window or tab >>Unique Solutions to Universal Problems: Studies of the Archaeal Cell
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Archaea is one of the three domains of life and studies of archaeal biology are important for understanding of life in extreme environments, fundamental biogeochemical processes, the origin of life, the eukaryotic cell and their own, unique biology. This thesis presents four studies of the archaeal cell, using the extremophilic Sulfolobus and ocean living Nitrosopumilus as model systems.

Cell division in crenarchaea is shown to be carried out by a previously unknown system named Cdv (cell division). The system shares homology with the eukaryotic ESCRT-III system which is used for membrane reorganization during vesicle formation, viral release and cytokinesis. Organisms of the phylum Thaumarchaeota also use the Cdv system, despite also carrying genes for the euryarchaeal and bacterial cell division system FtsZ.

The thaumarchaeal cell cycle is demonstrated to be dominated by the prereplicative and replicative stage, in contrasts to the crenarchaeal cell cycle where the cell at the majority of the time resides in the postreplicative stage. The replication rate is remarkably low and closer to what is measured for eukaryotes than other archaea.

The gene organization of Sulfolobus is significantly associated with the three origins of replication. The surrounding regions are dense with genes of high importance for the organisms such as highly transcribed genes, genes with known function in fundamental cellular processes and conserved archaeal genes. The overall gene density is elevated and transposons are underrepresented.

The archaeal virus SIRV2 displays a lytic life style where the host cell at the final stage of infection is disrupted for release of new virus particles. The remarkable pyramid-like structure VAP (virus associated pyramids), that is formed independently of the virus particle, is used for cell lysis.

The research presented in this thesis describes unique features of the archaeal cell and influences our understanding of the entire tree of life.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 72 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 888
Keyword
Archaea, Cdv, Cell cycle, Cell division, Cell lysis, Crenarchaea, ESCRT-III, Flow cytometry, Microarray, Microscopy, Nitrosopumilus, SIRV2, Sulfolobus, Thaumarchaea, Transcription, VAP, Virus
National Category
Microbiology Cell Biology
Research subject
Biology with specialization in Molecular Evolution
Identifiers
urn:nbn:se:uu:diva-162886 (URN)978-91-554-8244-2 (ISBN)
Public defence
2012-02-03, C4:301, Biomedicinskt Centrum, Husargatan 3; BMC, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2012-01-10 Created: 2011-12-05 Last updated: 2012-01-16

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Molecular Evolution
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 446 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf