uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Wave Energy from the North Sea: Experiences from the Lysekil Research Site
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Show others and affiliations
2008 (English)In: Surveys in geophysics, ISSN 0169-3298, E-ISSN 1573-0956, Vol. 29, no 3, 221-240 p.Article, review/survey (Refereed) Published
Abstract [en]

This paper provides a status update on the development of the Swedish wave energy research area located close to Lysekil on the Swedish West coast. The Lysekil project is run by the Centre for Renewable Electric Energy Conversion at Uppsala University. The project was started in 2004 and currently has permission to run until the end of 2013. During this time period 10 grid-connected wave energy converters, 30 buoys for studies on environmental impact, and a surveillance tower for monitoring the interaction between waves and converters will be installed and studied. To date the research area holds one complete wave energy converter connected to a measuring station on shore via a sea cable, a Wave Rider™ buoy for wave measurements, 25 buoys for studies on environmental impact, and a surveillance tower. The wave energy converter is based on a linear synchronous generator which is placed on the sea bed and driven by a heaving point absorber at the ocean surface. The converter is directly driven, i.e. it has no gearbox or other mechanical or hydraulic conversion system. This results in a simple and robust mechanical system, but also in a somewhat more complicated electrical system.

Place, publisher, year, edition, pages
2008. Vol. 29, no 3, 221-240 p.
Keyword [en]
Wave power, Renewable energy, Sea trial, Linear generator, Point absorber, Environmental impact
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-107215DOI: 10.1007/s10712-008-9047-xISI: 000260967900002OAI: oai:DiVA.org:uu-107215DiVA: diva2:228336
Available from: 2009-07-29 Created: 2009-07-29 Last updated: 2015-02-03Bibliographically approved
In thesis
1. Wave energy conversion and the marine environment: Colonization patterns and habitat dynamics
Open this publication in new window or tab >>Wave energy conversion and the marine environment: Colonization patterns and habitat dynamics
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A wave energy park has been established on the Swedish west coast outside Lysekil and pioneer work about its interactions with the marine environment has been conducted. So far, little is known about the effects of offshore energy installations on the marine environment, and this thesis assists in minimizing environmental risks as well as in enhancing potential positive effects on the marine environment. The Lysekil research site is situated about two kilometres offshore and has been under development since 2005. During this time 26 “environmental devices”, without generators, consisting of a steel buoy attached via a wire to a foundation on 25 m depth have been placed out for ecological studies on macrofauna in surrounding sediments and on colonization of the foundations and the buoys. Sediment samples to examine macrofauna in the seabed have been taken during five seasons. Biomass, abundance and diversity of infauna in the test site were generally low, but higher than in a nearby control site. The species composition was typical for the area and depth.

In addition to sediment analysis, the effect of wave power concrete foundations on the marine environment has been investigated by scuba diving. The surface orientation and its effect on colonization by sessile organisms was examined on the first five foundations, placed out in 2005, and observations of habitat use by fish and crustaceans were made. The results show a succession of colonization over time (three years of investigation) with a higher cover by sessile organisms on vertical surfaces. Mobile fauna abundance on and around the foundations was generally low.

Three months after the deployment of the 21 new foundations in 2007, assemblages of mobile organisms were examined visually. Also here, mobile species exhibit a low density, but still higher than on surrounding soft bottoms. The edible crab used artificial holes in the foundations frequently. The foundations were placed in two different clusters, north and south, and the degree to which early recruits covered the foundations and the succession of epibenthic communities were documented during two years. Sessile organisms colonized the northern foundations more rapidly, producing a higher diversity which suggests that the placement of wave energy devices affects colonization patterns.

Biofouling on buoys was examined and blue mussels, Mytilus edulis, dominated with a cover about 90%. Wave exposed buoys were particularly favoured by M. edulis which there had a higher biomass and larger shells compared to those on sheltered buoys. Biofouling on wave power buoys, independent whether these had a cylindrical or toroidal shape, was insufficient to markedly affect their energy production.

Finally, the thesis incorporates a review describing wave power projects in general pointing out the need of future research on for instance no-take zones, marine bioacoustics and electromagnetic fields. The main conclusions are that large-scale renewable wave energy conversion will cause ecological impact primarily by adding new hard substrate to an area but not by harming organisms or decreasing biodiversity within wave power parks.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2009. 50 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 663
Keyword
artificial reefs, benthos, biodiversity, biofouling, colonization, environmental impact, fish, shellfish, Mytilus edulis, renewable energy, wave power
National Category
Biological Sciences
Research subject
Animal Ecology
Identifiers
urn:nbn:se:uu:diva-107193 (URN)978-91-554-7581-9 (ISBN)
Public defence
2009-10-02, Friessalen, Norbyvägen 14, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2009-09-03 Created: 2009-07-27 Last updated: 2016-05-02Bibliographically approved
2. Ocean Wave Energy: Underwater Substation System for Wave Energy Converters
Open this publication in new window or tab >>Ocean Wave Energy: Underwater Substation System for Wave Energy Converters
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis deals with a system for operation of directly driven offshore wave energy converters. The work that has been carried out includes laboratory testing of a permanent magnet linear generator, wave energy converter mechanical design and offshore testing, and finally design, implementation, and offshore testing of an underwater collector substation. Long-term testing of a single point absorber, which was installed in March 2006, has been performed in real ocean waves in linear and in non-linear damping mode. The two different damping modes were realized by, first, a resistive load, and second, a rectifier with voltage smoothing capacitors and a resistive load in the DC-link. The loads are placed on land about 2 km east of the Lysekil wave energy research site, where the offshore experiments have been conducted. In the spring of 2009, another two wave energy converter prototypes were installed. Records of array operation were taken with two and three devices in the array. With two units, non-linear damping was used, and with three units, linear damping was employed. The point absorbers in the array are connected to the underwater substation, which is based on a 3 m3 pressure vessel standing on the seabed. In the substation, rectification of the frequency and amplitude modulated voltages from the linear generators is made. The DC voltage is smoothened by capacitors and inverted to 50 Hz electrical frequency, transformed and finally transmitted to the on-shore measuring station. Results show that the absorption is heavily dependent on the damping. It has also been shown that by increasing the damping, the standard deviation of electrical power can be reduced. The standard deviation of electrical power is reduced by array operation compared to single unit operation. Ongoing and future work include the construction and installation of a second underwater substation, which will connect the first substation and seven new WECs.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2010. 114 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 711
Keyword
wave energy, wave power, wave energy converter, direct-drive, permanent magnet linear generator, point absorber, array, farm, park, offshore, marine, substation, electrical transmission system
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-112915 (URN)978-91-554-7713-4 (ISBN)
Public defence
2010-03-05, Ångströmlaboratoriet, Polhemsalen, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2010-02-12 Created: 2010-01-22 Last updated: 2013-07-31Bibliographically approved
3. Energy from Ocean Waves: Full Scale Experimental Verification of a Wave Energy Converter
Open this publication in new window or tab >>Energy from Ocean Waves: Full Scale Experimental Verification of a Wave Energy Converter
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A wave energy converter has been constructed and its function and operational characteristics have been thoroughly investigated and published. The wave energy converter was installed in March of 2006 approximately two kilometers off the Swedish west coast in the proximity of the town Lysekil. Since then the converter has been submerged at the research site for over two and a half years and in operation during three time periods for a total of 12 months, the latest being during five months of 2008. Throughout this time the generated electricity has been transmitted to shore and operational data has been recorded. The wave energy converter and its connected electrical system has been continually upgraded and each of the three operational periods have investigated more advanced stages in the progression toward grid connection. The wave energy system has faced the challenges of the ocean and initial results and insights have been reached, most important being that the overall wave energy concept has been verified. Experiments have shown that slowly varying power generation from ocean waves is possible.

Apart from the wave energy converter, three shorter studies have been performed. A sensor was designed for measuring the air gap width of the linear generator used in the wave energy converter. The sensor consists of an etched coil, a search coil, that functions passively through induction. Theory and experiment showed good agreement.

The Swedish west coast wave climate has been studied in detail. The study used eight years of wave data from 13 sites in the Skagerrak and Kattegatt, and data from a wave measurement buoy located at the wave energy research site. The study resulted in scatter diagrams, hundred year extreme wave estimations, and a mapping of the energy flux in the area. The average energy flux was found to be approximately 5.2 kW/m in the offshore Skagerrak, 2.8 kW/m in the near shore Skagerrak, and 2.4 kW/m in the Kattegat.

A method for evaluating renewable energy technologies in terms of economy and engineering solutions has been investigated. The match between the technologies and the fundamental physics of renewable energy sources can be given in terms of the technology’s utilization. It is argued that engineers should strive for a high utilization if competitive technologies are to be developed.

Place, publisher, year, edition, pages
Uppsala: Universitetsbiblioteket, 2008. 130 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 580
Keyword
wave power, wave energy converter, sea trials, ocean energy, linear generator, point absorber, search coil, wave climate, utilization
National Category
Other Engineering and Technologies
Identifiers
urn:nbn:se:uu:diva-9404 (URN)978-91-554-7354-9 (ISBN)
Public defence
2008-12-12, Polacksbackens aula, Lägerhyddsv. 2, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2008-11-21 Created: 2008-11-21 Last updated: 2012-11-09Bibliographically approved
4. Electrical Systems for Wave Energy Conversion
Open this publication in new window or tab >>Electrical Systems for Wave Energy Conversion
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power.

To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection.

The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs.

The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 104 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 797
Keyword
Wave power, direct driven linear generators, electrical systems, non-linear loads
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-140116 (URN)978-91-554-7982-4 (ISBN)
Public defence
2011-02-18, Polhemsalen, Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Note

Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 727

Available from: 2011-01-28 Created: 2011-01-04 Last updated: 2013-05-17Bibliographically approved
5. Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System
Open this publication in new window or tab >>Buoy and Generator Interaction with Ocean Waves: Studies of a Wave Energy Conversion System
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

On March 13th, 2006, the Division of Electricity at Uppsala University deployed its first wave energy converter, L1, in the ocean southwest of Lysekil. L1 consisted of a buoy at the surface, connected through a line to a linear generator on the seabed. Since the deployment, continuous investigations of how L1 works in the waves have been conducted, and several additional wave energy converters have been deployed.

This thesis is based on ten publications, which focus on different aspects of the interaction between wave, buoy, and generator. In order to evaluate different measurement systems, the motion of the buoy was measured optically and using accelerometers, and compared to measurements of the motion of the movable part of the generator - the translator. These measurements were found to correlate well. Simulations of buoy and translator motion were found to match the measured values.

The variation of performance of L1 with changing water levels, wave heights, and spectral shapes was also investigated. Performance is here defined as the ratio of absorbed power to incoming power. It was found that the performance decreases for large wave heights. This is in accordance with the theoretical predictions, since the area for which the stator and the translator overlap decreases for large translator motions. Shifting water levels were predicted to have the same effect, but this could not be seen as clearly.

The width of the wave energy spectrum has been proposed by some as a factor that also affects the performance of a wave energy converter, for a set wave height and period. Therefore the relation between performance and several different parameters for spectral width was investigated. It was found that some of the parameters were in fact correlated to performance, but that the correlation was not very strong.

As a background on ocean measurements in wave energy, a thorough literature review was conducted. It turns out that the Lysekil project is one of quite few projects that have published descriptions of on-site wave energy measurements.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 52 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 872
Keyword
Wave power, Measurement systems, Marine technology, Energy conversion, Renewable energy, Energy absorption, Wave resource, Oceanic engineering, Linear generators, Point absorbers, Sea trials, Camera systems, Accelerometers, Offshore experiments
National Category
Energy Engineering Marine Engineering Energy Systems Ocean and River Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-160085 (URN)978-91-554-8192-6 (ISBN)
Public defence
2011-12-02, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2011-11-11 Created: 2011-10-14 Last updated: 2012-01-09Bibliographically approved
6. Submerged Transmission in Wave Energy Converters: Full Scale In-Situ Experimental Measurements
Open this publication in new window or tab >>Submerged Transmission in Wave Energy Converters: Full Scale In-Situ Experimental Measurements
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Different wave power technologies are in development around the world in different stages of prototype testing. So far only a few devices have been deployed offshore at full scale for extended periods of time. Little data is published about how these different devices perform.

This thesis presents results from experiments with the full-scale offshore wave energy converters at the Lysekil research site on the Swedish west coast. The theories, experiments, measurements, performance evaluations and developments of the submerged transmission in the direct driven permanent magnet linear generator are in focus. The reciprocating submerged transmission fulfills the purpose of transmitting the absorbed mechanical wave energy through the capsule wall into the generator, while preventing the seawater from entering the capsule and reducing the life time of the converter.

A measuring system with seven laser triangulation sensors has been developed to measure small relative displacements between piston rod and seal housing in the submerged transmission with excellent accuracy for the purpose of evaluating both functional behavior and successive wear in-situ. A method for calculating relative tilt angles, azimuth angles, differential tilt angles, and successive wear in the submerged transmission has been developed. Additional sensors systems have been installed in the converter enabling correlation and a thorough investigation into the operating conditions of the transmission and the converter. The thesis presents unique results from the measurements. A data acquisition system transmits the signals from the converter on the seabed to an onshore measuring station. Results are presented in time-, frequency- and the time-frequency domain.

The results have given important information for further development of the submerged transmission, which is important to the survivability of the system. The thesis describes the status of research, and is a step that may influence future designs of wave energy devices for reaching survivability and a cost-effective renewable energy system.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 214 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 961
Keyword
Wave energy converter, direct drive, submerged transmission, piston rod, seal housing, sealing system, laser triangulation sensor, offshore measurements, relative displacement, vibrations, tilt angle, tilting, wear estimation.
National Category
Energy Systems Marine Engineering Ocean and River Engineering Energy Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-179740 (URN)978-91-554-8440-8 (ISBN)
Public defence
2012-09-14, Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:00 (English)
Opponent
Supervisors
Projects
The Lysekil Wave Power Project
Note

Published is a preprint version of the full text and should be combined by the errata.

Available from: 2012-08-24 Created: 2012-08-21 Last updated: 2013-01-22Bibliographically approved
7. Experimental results from the Lysekil Wave Power Research Site
Open this publication in new window or tab >>Experimental results from the Lysekil Wave Power Research Site
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents how experimental results, from wave power research performed offshore at the Lysekil research site, were obtained. The data were used to verify theoretical models as well as evaluate the feasibility of wave power as a future sustainable energy source.

The first experiments carried out at the research site was the measurement of the force in a line where one end was connected to a buoy with a diameter of 3 m and the other end to a set of springs with limited stroke length. The system is exposed to high peak forces compared to average forces. The maximum measured force in the line, when the buoy motion is limited by a stiff stopper rope is ten times the average force in that particular sea state.

The experiment performed on the first wave energy converter tested at the Lysekil Research Site is described. The infrastructure of the site is presented where the central connection point is the measuring station. The key finding is that it is possible to transform the motions of ocean waves into electrical energy and distribute it to land.

Many wave energy converters must be interconnected if large amounts of energy are to be harvested from the waves. The first submerged substation intended for aggregation of energy from wave power converters is described, with focus on the measurement and control system placed inside the substation. During this experiment period the generators were equipped with many different sensors; these measurements are explained in the thesis.

The system that aggregates power from the studied wave energy converter is regularly exposed to peak power of up to 20 times the maximum average output from the converter.

Vertical and horizontal movement of the buoy has been measured in different ways. The result is that the vertical displacement of the buoy can be measured with a simple accelerometer circuit but it is much more complicated to measure the horizontal displacement. A special method for measuring the horizontal displacement has been implemented by measuring the strain in the enclosure and the force in the line.

Abstract [sv]

Den här avhandlingen berättar om hur experimenten vid Lysekils forskningsområde för vågkraft har utförts. Insamlade mätdata har använts för att verifiera teoretiska samband som modulerats vid Elektricitetslära, Uppsala universitet. De teoretiska och praktiska resultaten har visat på att vågkraft har förutsättningarna att implementeras som en hållbar framtida energikälla. Intressanta mätmetoder har utvecklas och påfrestningarna  på utrustningin och dess samband med medel effekten har studerats.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 101 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 957
Keyword
Wave power, Lysekil, Marine Substation, Offshore measurement, strain gauge, lateral force, Invlination and azimuth angles, Wave energy converter, Temperature measurements, Inverter, Energy, Control sustem, CompactRIO, Vågkraft, Mätteknik, Styrsystem, Lysekil
National Category
Marine Engineering Energy Systems Other Electrical Engineering, Electronic Engineering, Information Engineering Ocean and River Engineering Control Engineering
Research subject
Engineering Science
Identifiers
urn:nbn:se:uu:diva-179098 (URN)978-91-554-8433-0 (ISBN)
Public defence
2012-09-28, Polhem Å 10134, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (English)
Opponent
Supervisors
Projects
Lysekils projektet
Funder
Swedish Research Council, grant no. 621-2009-3417
Available from: 2012-09-05 Created: 2012-08-07 Last updated: 2013-01-22
8. Underwater radiated noise from Point Absorbing Wave Energy Converters: Noise Characteristics and Possible Environmental Effects
Open this publication in new window or tab >>Underwater radiated noise from Point Absorbing Wave Energy Converters: Noise Characteristics and Possible Environmental Effects
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The conversion of wave energy into electrical energy has the potential to become a clean and sustainable form of renewable energy conversion. However, like all forms of energy conversion it will inevitably have an impact on the marine environment, although not in the form of emissions of hazardous substances (gases, oils or chemicals associated with anticorrosion). Possible environmental issues associated with wave energy conversion include electromagnetic fields, alteration of sedimentation and hydrologic regimes and underwater radiated noise.

Underwater noise has the potential to propagate over long distances and thus have the potential to disturb marine organisms far away from the noise source. There is great variation in the ability to perceive sound between marine organisms, one sound that is clearly audible to one species can be completely inaudible to another. Thus, to be able to determine potential environmental impact from WECs associated with underwater noise, the noise radiated from the WECs must be known. This thesis presents results from studies on the underwater radiated noise from four different full-scale WECs in the Lysekil Wave Power Project.

Hydrophones were used to measure the underwater radiated noise from operating point absorbing linear WECs. The main purpose was to study the radiated noise from the operating WECs with emphasis on characteristics such as spectrum levels, Sound Pressure Level (SPL), noise duration and repetition rate. This to be able to determine the origin of the noise and if possible, implement design changes to minimize radiated noise.

The results identified two main operational noises (transients with the bulk of the energy in frequencies <1 kHz). The SPL of the radiated noise fluctuated significantly, depending on wave height. Broadband SPLrms of the measurements ranged between ~110 dB and ~140 dB re 1 µPa and SPLpeak of specific noises ranges between ~140 and ~180 dB re µPa. Audibility was estimated range from 1km to 15 km depending critically on species and on assumptions of propagation loss. The noise is not expected to have any negative effects on behaviour or mask any signals, unless in the vicinity (<150m) of the WECs in significant wave heights. No physical damage, even in close vicinity are expected on either fish or marine mammals.

Having the aim to have as little impact on the environment a possible, these studies are important. This way precautions can be implemented early in the technical development of this kind of renewable energy converters. The benefits from the WECs the Lysekil wave power project are believed to outweigh possible environmental impacts due to underwater radiated noise.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 62 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1200
Keyword
Wave energy conversion, renewable energy, environmental impact, marine ecology, underwater noise
National Category
Natural Sciences Engineering and Technology
Identifiers
urn:nbn:se:uu:diva-235016 (URN)978-91-554-9097-3 (ISBN)
Public defence
2014-12-12, Häggsalen, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Note

Vid avhandlingens tryckläggning upptäcktes inte att tidpunkt för disputation var fel.

Available from: 2014-11-21 Created: 2014-10-28 Last updated: 2015-02-03

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Leijon, MatsBoström, CeciliaHaikonen, KalleStrömstedt, ErlandStålberg, MagnusSundberg, JanSvensson, OlleTyrberg, SimonWaters, Rafael

Search in DiVA

By author/editor
Leijon, MatsBoström, CeciliaHaikonen, KalleStrömstedt, ErlandStålberg, MagnusSundberg, JanSvensson, OlleTyrberg, SimonWaters, Rafael
By organisation
ElectricityAnimal Ecology
In the same journal
Surveys in geophysics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 951 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf