uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The zebrafish gill model: induction of CYP1A, EROD and PAH adduct formation
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Environmental Toxicology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Environmental Toxicology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Physiology and Developmental Biology, Environmental Toxicology.
2009 (English)In: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 91, no 1, 62-70 p.Article in journal (Refereed) Published
Abstract [en]

Zebrafish (Danio rerio) is a common model species in fish toxicology, and the zebrafish gill is potentially useful in screening waterborne pollutants. We have previously developed a gill-based ethoxyresorufin-O-deethylase (EROD) assay, and proposed gill EROD activity as a biomarker for exposure to waterborne aryl hydrocarbon receptor (AHR) agonists. In this study we modified the gill EROD assay for use in zebrafish. We used immunohistochemistry to localize CYP1A induction, and microautoradiography to localize irreversible binding of the prototypic polycyclic aromatic hydrocarbon, 7,12-dimethylbenz[a]anthracene (DMBA) in zebrafish gills. Gill filament and liver microsomal EROD activities were measured after waterborne exposure of zebrafish and rainbow trout to benzo[a]pyrene (BaP) or beta-naphthoflavone (betaNF). The results showed considerably lower relative EROD induction by betaNF (1microM) in zebrafish than in rainbow trout, both in gills (13-fold versus 230-fold compared to control) and in liver (5-fold versus 320-fold compared to control). The induced hepatic EROD activity was similar in the two species, whereas the basal activity was considerably higher in zebrafish than in rainbow trout. In zebrafish gills, betaNF enhanced DMBA adduct formation and CYP1A immunostaining. Ellipticine blocked DMBA adduct formation and EROD activity following betaNF exposure but had no effect on CYP1A immunostaining. A notable finding was that the localization of DMBA adducts differed from that of CYP1A protein in betaNF-induced fish; CYP1A immunoreactivity was evenly distributed in the gills whereas DMBA adduction was confined to the leading edges of the filaments and the gill rakers, i.e., structures being highly exposed to DMBA-containing inhaled water. The results show that the modified method is suitable for determination of gill EROD activity in zebrafish, although rainbow trout seems more sensitive. They also imply that the sites of DMBA adduct formation in zebrafish gills are markedly influenced by kinetic factors.

Place, publisher, year, edition, pages
2009. Vol. 91, no 1, 62-70 p.
Keyword [en]
Zebrafish, Gill, CYP1A, EROD, DMBA, Adducts
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-108000DOI: 10.1016/j.aquatox.2008.10.010ISI: 000263021100008PubMedID: 19056132OAI: oai:DiVA.org:uu-108000DiVA: diva2:233877
Available from: 2009-09-03 Created: 2009-09-03 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed
By organisation
Environmental Toxicology
In the same journal
Aquatic Toxicology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 490 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf