uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with a clonal population structure in Northern Europe and America
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Evolution, Genomics and Systematics, Molecular Evolution.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Identifiers
URN: urn:nbn:se:uu:diva-108384OAI: oai:DiVA.org:uu-108384DiVA: diva2:236600
Available from: 2009-09-24 Created: 2009-09-17 Last updated: 2010-01-14
In thesis
1. Genome Evolution and Host Adaptation in Bartonella
Open this publication in new window or tab >>Genome Evolution and Host Adaptation in Bartonella
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Bacteria of the genus Bartonella infect the red blood cells of a wide range of wild and domestic mammals and are transmitted between hosts by blood-sucking insects. Although most Bartonella infections are asymptomatic, the genus contains several human pathogens. In this work, host adaptation and host switches in Bartonella have been studied from a genomic perspective, with special focus on the acquisition and evolution of genes involved in host interactions.

As part of this study, the complete genome of B. grahamii isolated from a Swedish wood mouse was sequenced. A genus-wide comparison revealed that rodent-associated Bartonella species, which have rarely been associated with human disease, have the largest genomes and the largest number of host-adaptability genes. Analysis of known and putative genes for host interactions identified several families of autotransporters as horizontally transferred to the Bartonella ancestor, with a possible role both during early host adaptation and subsequent host shifts.

In B. grahamii, the association of a gene transfer agent (GTA) and phage-derived run-off replication of a large genomic segment was demonstrated for the first time. Among all acquisitions to the Bartonella ancestor, the only well conserved gene clusters are those that encode the GTA and contain the origin of the run-off replication. This conservation, along with a high density of host-adaptability genes in the amplified region suggest that the GTA provides a strong selective advantage, possibly by increasing recombination frequencies of host-adaptability genes, thereby facilitating evasion of the host immune system and colonization of new hosts.

B. grahamii displays stronger geographic pattern and higher recombination frequencies than the cat-associated B. henselae, probably caused by different lifestyles and/or population sizes of the hosts. The genomic diversity of B. grahamii is markedly lower in Europe and North America than in Asia, possibly an effect of reduced host variability in these areas following the latest ice age.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2009. 68 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 675
Keyword
Bartonella, genome evolution, genome diversity, phage, gene transfer agent, secretion system, microarray
National Category
Bioinformatics and Systems Biology
Research subject
Evolutionary Genetics
Identifiers
urn:nbn:se:uu:diva-108376 (URN)978-91-554-7616-8 (ISBN)
Public defence
2009-11-06, Lindahlsalen, EBC, Norbyvägen 18, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2009-10-15 Created: 2009-09-17 Last updated: 2009-10-15Bibliographically approved

Open Access in DiVA

No full text

By organisation
Molecular Evolution

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 487 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf