uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fast crystallization of chalcogenide glass for rewritable memories
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics, Condensed Matter Theory.
Show others and affiliations
2008 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 93, no 6, 061913- p.Article in journal (Refereed) Published
Abstract [en]

By ab initio molecular dynamics simulations, we unraveled the unique network structure of amorphous Ge1Sb2Te4, which shows high rank of ordering and mostly consists of distorted defective octahedrons with a small portion of distorted tetrahedrons. The phase transition from amorphous to cubic Ge1Sb2Te4 would be mainly a process of angle rearrangements of tetrahedrons to octahedrons and vice versa.

Place, publisher, year, edition, pages
2008. Vol. 93, no 6, 061913- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-109132DOI: 10.1063/1.2967742ISI: 000258491000029OAI: oai:DiVA.org:uu-109132DiVA: diva2:248942
Available from: 2009-10-09 Created: 2009-10-09 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Insights into Materials Properties from Ab Initio Theory: Diffusion, Adsorption, Catalysis & Structure
Open this publication in new window or tab >>Insights into Materials Properties from Ab Initio Theory: Diffusion, Adsorption, Catalysis & Structure
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, density functional theory (DFT) calculations and DFT based ab initio molecular dynamics simulations have been employed in order to gain insights into materials properties like diffusion, adsorption, catalysis, and structure.

In transition metals, absorbed hydrogen atoms self-trap due to localization of metal d-electrons. The self-trapping state is shown to highly influence hydrogen diffusion in the classical over-barrier jump temperature region. Li diffusion in Li-N-H systems is investigated. The diffusion in Li3N is shown to be controlled by the concentration of vacancies. Exchanging one Li for H (Li2NH), gives a system where the diffusion no longer is dependent on the concentrations of vacancies, but instead on N-H rotations. Furthermore, exchanging another Li for H (LiNH2), results in a blockade of Li diffusion. For high-surface area hydrogen storage materials, metal organic frameworks and covalent organic frameworks, the hydrogen adsorption is studied. In metal organic frameworks, a Li-decoration is also suggested as a way to increase the hydrogen adsorption energy. In NaAlH4 doped with transition metals (TM), the hypothesis of TM-Al intermetallic alloys as the main catalytic species is supported. The source of the catalytic effect of carbon nanostructures on hydrogen desorption from NaAlH4 is shown to be the high electronegativity of the carbon nanostructures. A space-group optimized ab initio random structure search method is used to find a new ground state structure for BeC2 and MgC2. The fast change between the amorphous and the crystalline phase of GeSbTe phase-change materials is suggested to be due to the close resemblance between the local amorphous structure and the crystalline structure. Finally, we show that more than 80% of the voltage in the lead acid battery is due to relativistic effects.

 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2010. 81 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 772
Keyword
Density functional theory, Molecular dynamics, Diffusion, Catalysis, Adsorption, Random structure search, Hydrogen-storage materials, Phase-change materials
National Category
Condensed Matter Physics Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-131331 (URN)978-91-554-7907-7 (ISBN)
Public defence
2010-11-12, Siegbansalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Note
Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 702Available from: 2010-10-21 Created: 2010-09-30 Last updated: 2011-04-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Johansson, BörjeAhuja, Rajeev

Search in DiVA

By author/editor
Johansson, BörjeAhuja, Rajeev
By organisation
Condensed Matter Theory
In the same journal
Applied Physics Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 471 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf