uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pauli spin blockade in carbon nanotube double quantum dots
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Materials Science.
Show others and affiliations
2008 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 77, no 24, 245439- p.Article in journal (Refereed) Published
Abstract [en]

We report Pauli spin blockade in a carbon nanotube double quantum dot defined by tunnel barriers at the contacts and a structural defect in the nanotube. We observe a pronounced current suppression for negative source-drain bias voltages, which is investigated for both symmetric and asymmetric coupling of the quantum dots to the leads. The measured differential conductance agrees well with a theoretical model of a double quantum dot system in the spin-blockade regime, which allows us to estimate the occupation probabilities of the relevant singlet and triplet states. This work shows that effective spin-to-charge conversion in nanotube quantum dots is feasible and opens the possibility of single-spin readout in a material that is not limited by hyperfine interaction with nuclear spins.

Place, publisher, year, edition, pages
2008. Vol. 77, no 24, 245439- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-109999DOI: 10.1103/PhysRevB.77.245439ISI: 000257289700127OAI: oai:DiVA.org:uu-109999DiVA: diva2:274998
Available from: 2009-11-02 Created: 2009-11-02 Last updated: 2010-06-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
Department of Physics and Materials Science
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 454 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf