uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Hydroxylapatite growth on single-crystal rutile substrates
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microstructure Laboratory.
Show others and affiliations
2008 (English)In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 29, no 23, 3317-3323 p.Article in journal (Refereed) Published
Abstract [en]

Titanium is widely used as an implant material. In addition to the bulk properties of titanium, the biological response is to a large degree controlled via the surface. The native amorphous titanium oxide that forms spontaneously on the surface gives a very good biological response. Lately it has been shown that crystalline titanium oxides (rutile and anatase) have in vitro bioactive properties. In addition to its potential for new materials development, this finding also opens up for the possibility of studying the mechanisms of bioactivity on materials with strictly controlled surfaces. In this paper the mechanisms behind the in vitro bioactivity are studied, using rutile single crystals. Three single-crystal rutile substrates: (100), (110), and (001), and a polycrystalline rutile substrate obtained by physical vapour deposition were soaked in a phosphate buffered saline solution for up to 4 weeks. The hydroxylapatite films that formed were analysed by X-ray diffraction, scanning electron microscopy, focused ion beam, and transmission electron microscopy. The hydroxylapatite grew faster on the (001) surface than on the other two. It was also found that on the (001) surface the direction of fast growth in hydroxylapatite was aligned parallel to the surface. This is in contrast to the (110) rutile surface where the fast growth of the hydroxylapatite crystal was directed outwards from the surface. The (100) face had poor adhesion at the interface. The orientations of the precipitated crystallites play a significant role in the faster coverage of the (001) rutile face. Based on the experimental results, a model for the hydroxylapatite growth process is given.

Place, publisher, year, edition, pages
2008. Vol. 29, no 23, 3317-3323 p.
Keyword [en]
rutile, titanium, hydroxylapatite, bioactivity, XRD, TEM
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-110011DOI: 10.1016/j.biomaterials.2008.04.034ISI: 000257344600004OAI: oai:DiVA.org:uu-110011DiVA: diva2:275013
Available from: 2009-11-02 Created: 2009-11-02 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Heinrichs, JannicaEricson, FredricEngqvist, Håkan

Search in DiVA

By author/editor
Heinrichs, JannicaEricson, FredricEngqvist, Håkan
By organisation
Applied Materials SciencesMicrostructure Laboratory
In the same journal
Biomaterials
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 872 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf