uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interface electronic states and molecular structure of a triarylamine based hole conductor on rutile TiO2(110)
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Show others and affiliations
2008 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 128, no 18, 184709- p.Article in journal (Refereed) Published
Abstract [en]

The molecular and electronic surface structure of a triarylamine based hole-conductor (HC) molecule evaporated onto rutile TiO2(110) single crystal is investigated by means of synchrotron light based photoelectron spectroscopy and x-ray absorption spectroscopy in combination with calculations based on density functional theory. Different amounts of the HC molecule was evaporated spanning the monolayer to multilayer region. The molecular surface structure is investigated and the results indicate that no specific covalent chemical bonding is formed and that the plane formed by the different nitrogens in the HC molecules has a rather small angle versus the TiO2 substrate surface plane. Some molecular ordering also persists in the multilayer region. The experimental core level spectra, valence level spectra, and the N 1s x-ray absorption spectroscopy spectra are well modeled by calculations on an individual molecule. Interestingly, the formation of the TiO2/HC interface results in significant binding energy shifts in core levels and valence levels shifting all peaks of a the HC material to the same extent. Smaller shifts were also observed in the substrate core level peaks. The shift is discussed in terms of nanoscale energy level bending and final state hole screening. With respect to electronic applications, specifically in a solid state dye-sensitized solar cell, it is argued that the observed energy level alignment at the TiO2/HC interface can act as a hole trap.

Place, publisher, year, edition, pages
2008. Vol. 128, no 18, 184709- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-110189DOI: 10.1063/1.2913245ISI: 000255983500053OAI: oai:DiVA.org:uu-110189DiVA: diva2:275518
Available from: 2009-11-05 Created: 2009-11-05 Last updated: 2017-12-12

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rensmo, H.

Search in DiVA

By author/editor
Rensmo, H.
By organisation
Department of Physics
In the same journal
Journal of Chemical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 391 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf