uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of the target composition on reactively sputtered titanium oxide films
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. (Thin Films Group)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Ion Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. (Thin Films Group)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics. (Thin Films Group)
Show others and affiliations
2009 (English)In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 83, no 10, 1295-1298 p.Article in journal (Refereed) Published
Abstract [en]

Titanium dioxide thin films have many interesting properties and are used in various applications. High refractive index of titania makes it attractive for the glass coating industry, where it is used in low-emissivity and antireflective coatings. Magnetron sputtering is the most common deposition technique for large area coatings and a high deposition rate is therefore of obvious interest. It has been shown previously that high rate can be achieved using substoichiometric targets. This work deals with reactive magnetron sputtering of titanium oxide films from TiOx targets with different oxygen contents. The deposition rate and hysteresis behaviour are disclosed. Films were prepared at various oxygen flows and all films were deposited onto glass and silicon substrates with no external heating. The elemental compositions and structures of deposited films were evaluated by means of X-ray photoelectron spectroscopy, elastic recoil detection analysis and X-ray diffraction. All deposited films were X-ray amorphous. No significant effect of the target composition on the optical properties of coatings was observed. However, the residual atmosphere is shown to contribute to the oxidation of growing films.

Place, publisher, year, edition, pages
2009. Vol. 83, no 10, 1295-1298 p.
Keyword [en]
magnetron sputtering, titanium dioxide, high rate deposition, sputtering, tio2, tio2 films, refractive-index, thin-films, dc, ion, deposition, dioxide, time
National Category
Physical Sciences Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-110289DOI: 10.1016/j.vacuum.2009.03.026ISI: 000267505100022ISBN: 0042-207X OAI: oai:DiVA.org:uu-110289DiVA: diva2:275928
Note

Sp. Iss. SI 464KZ Times Cited:0 Cited References Count:19

Available from: 2009-11-09 Created: 2009-11-09 Last updated: 2016-04-14Bibliographically approved
In thesis
1. Reactive Sputter Deposition of Functional Thin Films
Open this publication in new window or tab >>Reactive Sputter Deposition of Functional Thin Films
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thin film technology is of great significance for a variety of products, such as electronics, anti-reflective or hard coatings, sensors, solar cells, etc. This thesis concerns the synthesis of thin functional films, reactive magnetron sputter deposition process as such and the physical and functional characterization of the thin films synthesized. Characteristic for reactive sputtering processes is the hysteresis due to the target poisoning. One particular finding in this work is the elimination of the hysteresis by means of a mixed nitrogen/oxygen processing environment for dual sputtering of Alumina-Zirconia thin films. For a constant moderate flow of nitrogen, the hysteresis could be eliminated without significant incorporation of nitrogen in the films. It is concluded that optimum processing conditions for films of a desired composition can readily be estimated by modeling. The work on reactively sputtered SiO2–TiO2 thin films provides guidelines as to the choice of process parameters in view of the application in mind, by demonstrating that it is possible to tune the refractive index by using single composite Six/TiO2 targets with the right composition and operating in a suitable oxygen flow range. The influence of the target composition on the sputter yield is studied for reactively sputtered titanium oxide films. It is shown that by using sub-stoichiometric targets with the right composition and operating in the proper oxygen flow range, it is possible to increase the sputter rate and still obtain stoichiometric coatings. Wurtzite aluminum nitride (w-AlN) thin films are of great interest for electro-acoustic applications and their properties have in recent years been extensively studied. One way to tailor material properties is to vary the composition by adding other elements. Within this thesis (Al,B)N films of the wurtzite structure and a strong c-axis texture have been grown by reactive sputter deposition. Nanoindentation experiments show that the films have nanoindentation hardness in excess of 30 GPa, which is as hard as commercially available hard coatings such as TiN. Electrical properties of w-(Al,B)N thin films were investigated. W-(Al,B)N thin films are found to have a dielectric strength of ~3×106 V/cm, a relatively high k-value around 12 and conduction mechanisms similar to those of AlN. These results serve as basis for further research and applications of w-(Al,B)N thin films. An AlN thin film bulk acoustic resonator (FBAR) and a solidly mounted resonator (SMR) together with a microfluidic transport system have been fabricated. The fabrication process is IC compatible and uses reactive sputtering to deposit piezoelectric AlN thin films with a non-zero mean inclination of the c-axis, which allows in-liquid operation through the excitation of the shear mode. The results on IC-compatibility, Q-values, operation frequency and resolution illustrate the potential of this technology for highly sensitive low-cost micro-biosensor systems for applications in, e.g. point-of-care testing.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 52 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 945
Keyword
thin film, reactive sputtering, coating, resonator, sensor, FBAR, SMR, aluminum nitride, (Al, B)N
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Electronics
Identifiers
urn:nbn:se:uu:diva-175666 (URN)978-91-554-8403-3 (ISBN)
Public defence
2012-09-21, Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (Swedish)
Opponent
Supervisors
Available from: 2012-08-17 Created: 2012-06-11 Last updated: 2013-01-22

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kubart, TomasJensen, JensNyberg, TomasLiljeholm, LinaBerg, Sören

Search in DiVA

By author/editor
Kubart, TomasJensen, JensNyberg, TomasLiljeholm, LinaBerg, Sören
By organisation
Solid State ElectronicsIon Physics
In the same journal
Vacuum
Physical SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 914 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf