uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Investigation of side shift and edge losses of surface scattering samples in integrating sphere measurements
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Physics.
(English)In: Applied Optics, ISSN 0003-6935Article in journal (Refereed) Submitted
Abstract [en]

Light scattering materials are frequently used in solar energy applications, for instance as cover glass in solar thermal absorbers or to increase the path length of photons in solar cells. Knowing the transmittance of such materials is essential to modeling, designing or characterizing a system with these materials as components. The transmittance is traditionally obtained using an integrating sphere spectrophotometer. However, it is known that most commercial spectrophotometers might underestimate the true transmittance of surface scattering samples. Some of the scattered light might hit the edge and escape out of the sample. Thereby the transmitted light exits the sample in such a fashion, that it is not collected by the integrating sphere. The detected signal from the light entering the sphere then underestimates the real transmittance or reflectance of the sample. In this paper this side shift and edge losses of surface scattering samples have been studied and the results show that this might have a significant impact on measured values. Several different techniques have been used to quantify the influence on measurements.

URN: urn:nbn:se:uu:diva-110715OAI: oai:DiVA.org:uu-110715DiVA: diva2:278018
Available from: 2009-11-23 Created: 2009-11-23 Last updated: 2009-11-23Bibliographically approved
In thesis
1. Optical Characterization and Energy Simulation of Glazing for High-Performance Windows
Open this publication in new window or tab >>Optical Characterization and Energy Simulation of Glazing for High-Performance Windows
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Optisk karakterisering och energisimulering av smarta fönster
Abstract [en]

This thesis focuses on one important component of the energy system - the window. Windows are installed in buildings mainly to create visual contact with the surroundings and to let in daylight, and should also be heat and sound insulating. This thesis covers four important aspects of windows: antireflection and switchable coatings, energy simulations and optical measurements.

Energy simulations have been used to compare different windows and also to estimate the performance of smart or switchable windows, whose transmittance can be regulated. The results from this thesis show the potential of the emerging technology of smart windows, not only from a daylight and an energy perspective, but also for comfort and well-being. The importance of a well functioning control system for such windows, is pointed out.

To fulfill all requirements of modern windows, they often have two or more panes. Each glass surface leads to reflection of light and therefore less daylight is transmitted. It is therefore of interest to find ways to increase the transmittance. In this thesis antireflection coatings, similar to those found on eye-glasses and LCD screens, have been investigated. For large area applications such as windows, it is necessary to use techniques which can easily be adapted to large scale manufacturing at low cost. Such a technique is dip-coating in a sol-gel of porous silica. Antireflection coatings have been deposited on glass and plastic materials to study both visual and energy performance and it has been shown that antireflection coatings increase the transmittance of windows without negatively affecting the thermal insulation and the energy efficiency.

Optical measurements are important for quantifying product properties for comparisons and evaluations. It is important that new measurement routines are simple and applicable to standard commercial instruments. Different systematic error sources for optical measurements of patterned light diffusing samples using spectrophotometers with integrating spheres have been investigated and some suggestions are made for how to avoid such errors.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2009. 77 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 692
energy simulations, antireflection coatings, dip-coating, optical measurements, spectrophotometer, integrating spheres, low-e windows, solar control windows, smart windows, control strategies, U value, g-value
National Category
Other Engineering and Technologies
Research subject
Engineering Science
urn:nbn:se:uu:diva-110716 (URN)978-91-554-7667-0 (ISBN)
Public defence
2010-01-08, Polhemssalen, Ångström Laboratory, Uppsala University, 10:15 (English)
Available from: 2009-12-17 Created: 2009-11-23 Last updated: 2009-12-17Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Jonsson, AndreasRoos, Arne
By organisation
Solid State Physics
In the same journal
Applied Optics

Search outside of DiVA

GoogleGoogle Scholar

Total: 458 hits
ReferencesLink to record
Permanent link

Direct link