uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Generalized minimizer solutions for equations with the p-Laplacian and a potential termPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2008 (English)In: Proceedings of the Royal Society of Edinburgh. Section A Mathematics, ISSN 0308-2105, Vol. 138, no 1, 201-221 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2008. Vol. 138, no 1, 201-221 p.
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-112389DOI: 10.1017/S0308210506000904ISI: 000253780800010OAI: oai:DiVA.org:uu-112389DiVA: diva2:286094
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-01-13 Created: 2010-01-13 Last updated: 2010-01-19Bibliographically approved

Let Omega be a domain in R-N (possibly unbounded), N >= 2, 1 < p < infinity, and let V is an element of L-loc(infinity)(Omega). Consider the energy functional Q(V) on C-c(infinity)(Omega) and its Gateaux derivative Q'(V), respectively, given by Q(V)(u) =(def) 1/p integral(Omega)(vertical bar del u vertical bar(p) + V vertical bar u vertical bar(p))dx, Q'(V)(u) = div(vertical bar del u vertical bar(p-2)del u vertical bar(p-2)u, for u is an element of C-c(infinity) (Omega). Assume that Q(V) > 0 on C-c(infinity) (Omega) \ {0} and that Q(V) does not have a ground state (in the sense of a null sequence for Q(V) that converges in L-loc(p)(Omega) to a positive function phi is an element of C-loc(1)(Omega), a ground state). Finally, let f is an element of D'(Omega) be such that the functional u -> Q(V) (u) - < u, f > : C-c(infinity)(Omega) -> R is bounded from below. Then the equation Q'(V)(u) = f has a solution u(0) W-loc(1,p)(Omega) in the sense of distributions. This solution also minimizes the functional u -> Q(V)** (u) - < u, f > : C-c(infinity) (Omega) -> R, where Q(V)** denotes the bipolar (Gamma-regularization) of Q(V) and Q(V)** is the largest convex, weakly lower sermcontinuous functional on C-c(infinity)(Omega) that satisfies Q(V)** <= Q(V). (The original energy functional Q(V) is not necessarily convex.).

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});