uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
GGA+U modeling of structural, electronic, and magnetic properties of iron porphyrin-type molecules
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
2008 (English)In: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 343, no 1, 47-60 p.Article in journal (Refereed) Published
Abstract [en]

An ab initio computational study of various iron porphyrin-type molecules has been performed. Our ab initio calculations are based on the density functional theory (DFT) and have been conducted using the generalized gradient approximation (GGA, with PW91 & PBE versions) as well as GGA + U approach, in which an additional Hubbard-U term is added for the treatment of strong on-site 3d electron-electron interactions on Fe. We have, first, optimized the atomic distances for the porphyrin models by minimizing the total energy. Second, we benchmarked our computational approach by comparison to existing calculated results for relatively small porphyrin models obtained by the Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional. We have considered several models of ligated porphyrins (Cl and NH3 ligated), as well as charged and neutral molecules, to study properties of the molecules as a function of oxidation state and local chemical environment of the Fe atom. We find that the GGA + U (with U approximate to 4 eV) approach provides a better description of the molecular electronic properties for five coordinated (Fe-III) systems than the standard GGA approach, which indicates that Coulombic electron interaction effects on the Fe are important and play an essential role, particularly for the spin moment on the molecule. Also, we proceed to a larger, more realistic Fe-porphyrin model (FeP), for which we also investigate the performance of the GGA and GGA + U functionals. The character of the electronic states involved in the chemical bonding has been analyzed with the aid of energy resolved charge densities.

Place, publisher, year, edition, pages
2008. Vol. 343, no 1, 47-60 p.
Keyword [en]
Fe-porphyrin, ab initio DFT modeling, GGA plus U, Fe-porphine
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-112455DOI: 10.1016/j.chemphys.2007.10.030ISI: 000252917800005OAI: oai:DiVA.org:uu-112455DiVA: diva2:286225
Available from: 2010-01-14 Created: 2010-01-13 Last updated: 2017-01-25

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sanyal, BiplabOppeneer, Peter M.

Search in DiVA

By author/editor
Sanyal, BiplabOppeneer, Peter M.
By organisation
Department of Physics
In the same journal
Chemical Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 448 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf