uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the efficacy of using ground return in the broadband power-line communications: A transmission-line analysis
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
2008 (English)In: IEEE Transactions on Power Delivery, ISSN 0885-8977, E-ISSN 1937-4208, Vol. 23, no 1, 132-139 p.Article in journal (Refereed) Published
Abstract [en]

The power-line infrastructure has been identified as an efficient system suitable for broadband power-line communication (BPLC) to connect and control various end users. However, the network is affected by stochastic attenuations due to the number of interconnected branches, their line lengths, associated terminal loads, etc. There is yet another parameter that could influence the above stated attenuations or distortions depending on the way the signals are allowed to return to the transmitting end. In this paper, we investigate whether a finitely conducting ground return could be used for BPLC and to investigate its performance over the conventional methods Where one of the adjacent power-line conductors is-used as signal return. This study could be helpful to those who are proposing the use of ground as a return conductor in BPLC systems. It will be shown that the use of ground return for the BPLC system is effective or better only when the ground conductivity is high (>50 mS/m). When ground conditions are poorer, attenuations increase with., making them unsuitable for BPLC. There are situafrequency tions where poor ground conditions can still be used but only the transmission-line lengths are shorter. The analysis presented here is based on transmission-line solutions both under lossless (without ground return) and lossy (with ground return) conditions and are applied to typical low-voltage and medium-voltage channels. Comparisons are also made based on the power spectral densities and channel capacities.

Place, publisher, year, edition, pages
2008. Vol. 23, no 1, 132-139 p.
Keyword [en]
branched network, broadband power line, channel capacity, frequency response, ground impedance, low-voltage (LV) channel, medium-voltage (MV) channel, multipath, power-line channel, transfer function
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-113033DOI: 10.1109/TPWRD.2007.910987ISI: 000252059100016OAI: oai:DiVA.org:uu-113033DiVA: diva2:289707
Available from: 2010-01-25 Created: 2010-01-25 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Anatory, JustinianTheethayi, Nelson

Search in DiVA

By author/editor
Anatory, JustinianTheethayi, Nelson
By organisation
Electricity
In the same journal
IEEE Transactions on Power Delivery
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 500 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf