uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Amelioration of the premature ageing-like features of Fgf-23 knockout mice by genetically restoring the systemic actions of FGF-23
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Orthopaedics.
Show others and affiliations
2008 (English)In: Journal of Pathology, ISSN 0022-3417, E-ISSN 1096-9896, Vol. 216, no 3, 345-355 p.Article in journal (Refereed) Published
Abstract [en]

Genetic ablation of fibroblast growth factor 23 from mice (Fgf-23−/−) results in a short lifespan with numerous abnormal biochemical and morphological features. Such features include kyphosis, hypogonadism and associated infertility, osteopenia, pulmonary emphysema, severe vascular and soft tissue calcifications, and generalized atrophy of various tissues. To determine whether these widespread anomalies in Fgf-23−/− mice can be ameliorated by genetically restoring the systemic actions of FGF-23, we generated Fgf-23−/− mice expressing the human FGF-23 transgene in osteoblasts under the control of the 2.3 kb α1(I) collagen promoter (Fgf-23−/−/hFGF-23-Tg double mutants). This novel mouse model is completely void of all endogenous Fgf-23 activity, but produces human FGF-23 in bone cells that is subsequently released into the circulation. Our results suggest that lack of Fgf-23 activities results in extensive premature ageing-like features and early mortality of Fgf-23−/− mice, while restoring the systemic effects of FGF-23 significantly ameliorates these phenotypes, with the resultant effect being improved growth, restored fertility, and significantly prolonged survival of double mutants. With regard to their serum biochemistry, double mutants reversed the severe hyperphosphataemia, hypercalcaemia, and hypervitaminosis D found in Fgf-23−/− littermates; rather, double mutants show hypophosphataemia and normal serum 1,25-dihydroxyvitamin D3 levels similar to pure FGF-23 Tg mice. These changes were associated with reduced renal expression of NaPi2a and 1α-hydroxylase, compared to Fgf-23−/− mice. FGF-23 acts to prevent widespread abnormal features by acting systemically to regulate phosphate homeostasis and vitamin D metabolism. This novel mouse model provides us with an in vivo tool to study the systemic effects of FGF-23 in regulating mineral ion metabolism and preventing multiple abnormal phenotypes without the interference of native Fgf-23.

Place, publisher, year, edition, pages
2008. Vol. 216, no 3, 345-355 p.
Keyword [en]
organ atrophy, mineral ion homeostasis, vitamin D metabolism, transgene, human FGF23
National Category
URN: urn:nbn:se:uu:diva-113206DOI: 10.1002/path.2409ISI: 000260622000009PubMedID: 18729070OAI: oai:DiVA.org:uu-113206DiVA: diva2:290125
Available from: 2010-01-26 Created: 2010-01-26 Last updated: 2014-11-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Marsell, RichardJonsson, Kenneth B.
By organisation
In the same journal
Journal of Pathology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 215 hits
ReferencesLink to record
Permanent link

Direct link