uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the size of identifying codes in binary hypercubesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2009 (English)In: Journal of combinatorial theory. Series A (Print), ISSN 0097-3165, E-ISSN 1096-0899, Vol. 116, no 5, 1087-1096 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2009. Vol. 116, no 5, 1087-1096 p.
##### Keyword [en]

Identifying code, Optimal rate, Hypercube, Fault diagnosis
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-114387DOI: 10.1016/j.jcta.2009.02.004ISI: 000266210400009OAI: oai:DiVA.org:uu-114387DiVA: diva2:293872
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2010-02-15 Created: 2010-02-15 Last updated: 2010-07-28Bibliographically approved

In this paper, we consider identifying codes in binary Hamming spaces F-n, i.e., in binary hypercubes. The concept of (r, <= l)-identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. Currently, the subject forms a topic of its own with several possible applications, for example, to sensor networks. Let us denote by M-r((<= l)) (n) the smallest possible cardinality of an (r, <= l)-identifying code in F-n. In 2002, Honkala and Lobstein showed for l = 1 that lim(n ->infinity)1/nlog(2)M(r)((<= l))(n) = 1 - h(rho), where r = left perpendicular rho nright perpendicular, rho epsilon [0, 1) and h(x) is the binary entropy function. In this paper, we prove that this result holds for any fixed l >= 1 when rho epsilon [0, 1/2). We also show that M-r((<= l))(n) = O(n(3/2)) for every fixed l and r slightly less than n/2, and give an explicit construction of small (r, <= 2)-identifying codes for r = left perpendicularn/2right perpendicular - 1.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});