uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas
MD Andersen Cancer Center.
MD Andersen Cancer Center.
MD Andersen Cancer Center.
MD Andersen Cancer Center.
Show others and affiliations
2009 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 106, no 39, 16675-16679 p.Article in journal (Refereed) Published
Abstract [en]

The levels of insulin-like growth factor-binding protein 2 (IGFBP2) are elevated during progression of many human cancers. By using a glial-specific transgenic mouse system (RCAS/Ntv-a), we reported previously that IGFBP2 is an oncogenic factor for glioma progression in combination with platelet-derived growth factor-beta (PDGFB). Because the INK4a-ARF locus is often deleted in high-grade gliomas (anaplastic oligodendroglioma and glioblastoma), we investigated the effect of the Ink4a-Arf-null background on IGFBP2-mediated progression of PDGFB-initiated oligodendroglioma. We demonstrate here that homozygous deletion of Ink4a-Arf bypasses the requirement of exogenously introduced IGFBP2 for glioma progression. Instead, absence of Ink4a-Arf resulted in elevated endogenous tumor cell IGFBP2. An inverse relationship between p16(INK4a) and IGFBP2 expression was also observed in human glioma tissue samples and in 90 different cancer cell lines by using Western blotting and reverse-phase protein lysate arrays. When endogenous IGFBP2 expression was attenuated by an RCAS vector expressing antisense IGFBP2 in our mouse model, a decreased incidence of anaplastic oligodendroglioma as well as prolonged survival was observed. Thus, p16(INK4a) is a negative regulator of the IGFBP2 oncogene. Loss of Ink4a-Arf results in increased IGFBP2, which contributes to glioma progression, thereby implicating IGFBP2 as a marker and potential therapeutic target for Ink4a-Arf-deleted gliomas.

Place, publisher, year, edition, pages
2009. Vol. 106, no 39, 16675-16679 p.
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-119616DOI: 10.1073/pnas.0900807106ISI: 000270305800026PubMedID: 19805356OAI: oai:DiVA.org:uu-119616DiVA: diva2:300545
Available from: 2010-02-26 Created: 2010-02-26 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Tchougounova, ElenaUhrbom, Lene

Search in DiVA

By author/editor
Tchougounova, ElenaUhrbom, Lene
By organisation
Cancer and Vascular Biology
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 674 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf