uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of defects on the magnetism of Mn-doped ZnO
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics.
2007 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 101, no 9, 09H101- p.Article in journal (Refereed) Published
Abstract [en]

The properties of dilute magnetic semiconductors are usually strongly influenced by the defects present in the system. Ab initio calculations may provide valuable insight for the microscopic understanding of the interactions with defects. Here, we present studies of Mn-doped ZnO in the presence of several defects by a combined approach of ab initio electronic structure calculations using Korringa-Kohn-Rostoker-coherent potential approximation and Monte Carlo simulations (MCSs). Electronic structure and magnetic interactions have similar trends for wurtzite and zinc-blende crystal structures. A weak antiferromagnetic interaction has been found for 5% Mn doping in defect-free ZnO. Defects such as O vacancies and Zn interstitials lead to antiferromagnetic interactions between the Mn atoms, while Zn vacancies and oxygen substitution by nitrogen yield ferromagnetic interactions. As the concentration of Mn is low and the exchange interactions are short ranged, MCSs show small values of Curie temperatures (not more than 50 K). However, for a few cases with codoping of Mn and defects, we obtained higher Curie temperatures (around 130 K). Estimates of the Curie temperatures, assuming an average separation of the Mn atoms in the mean-field solution of Heisenberg model, are in very good agreement with the results obtained from MCS.

Place, publisher, year, edition, pages
2007. Vol. 101, no 9, 09H101- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-119896DOI: 10.1063/1.2709411ISI: 000246567900308OAI: oai:DiVA.org:uu-119896DiVA: diva2:301219
Available from: 2010-03-02 Created: 2010-03-02 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Density Functional Theory Applied to Materials for Spintronics
Open this publication in new window or tab >>Density Functional Theory Applied to Materials for Spintronics
2010 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The properties of dilute magnetic semiconductors have been studied by combined ab initio, Monte Carlo, and experimental techniques. This class of materials could be very important for future spintronic devices, that offer enriched functionality by making use of both the spin and the charge of the electrons. The main part of the thesis concerns the transition metal doped ZnO.

The role of defects on the magnetic interactions in Mn-doped ZnO was investigated. In the presence of acceptor defects such as zinc vacancies and oxygen substitution by nitrogen, the magnetic interactions are ferromagnetic. For dilute concentrations of Mn (~ 5%) the ordering temperature of the system is low, due to the short ranged character of the exchange interactions and disorder effects.

The clustering tendency of the Co atoms in a ZnO matrix was also studied. The electronic structure, and in turn the magnetic interactions among the Co atoms, is strongly dependent on the exchange-correlation functional used. It is found that Co impurities tend to form nanoclusters and that the interactions among these atoms are antiferromagnetic within the local spin density approximation + Hubbard U approach.

The electronic structure, as well as the chemical and magnetic interactions in Co and (Co,Al)-doped ZnO, was investigated by joined experimental and theoretical techniques. For a good agreement between the two, approximations beyond the local density approximation must be used. It is found that the Co atoms prefer to cluster within the semiconducting matrix, a tendency which is increased with Al co-doping. We envision that it is best to describe the system as superparamagnetic due to the formation of  Co nanoclusters within which the interactions are antiferromagnetic.

The magnetic anisotropy and evolution of magnetic domains in Fe81Ni19/Co(001) superlattices were investigated both experimentally, as well as using model spin dynamics. A magnetic reorientation transition was found.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2010. 67 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 721
Keyword
spintronics, dilute magnetic semiconductors, density functional theory, exchange interactions, magnetic percolation, ordering temperature, disorder, electronic structure
National Category
Physical Sciences
Research subject
Materials Science
Identifiers
urn:nbn:se:uu:diva-119887 (URN)978-91-554-7737-0 (ISBN)
Public defence
2010-04-16, Polhemsalen, 751 20 Uppsala, Ångström Laboratory, 10:15 (English)
Opponent
Supervisors
Available from: 2010-03-26 Created: 2010-03-02 Last updated: 2010-03-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sanyal, BiplabEriksson, Olle

Search in DiVA

By author/editor
Sanyal, BiplabEriksson, Olle
By organisation
Department of Physics
In the same journal
Journal of Applied Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 639 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf